GeneralDNAFileParser Usage Document

Joshua Sailsbery
Index
1GeneralDNAFileParser Usage Document

2Index

31.
GeneralDNAFileParser Errata

31.1
Supported file types.

31.2
General Format.

31.3
Tree Format.

31.4
Taxon Name.

41.5
Sequence DNA Data.

41.6
Tree Name.

41.7
Tree Relation.

51.8
Node name and sequence.

51.9
Comparison Tree.

51.10
Translate Block.

62.
User Settings

62.1
allCaps

62.2
evenHanded

62.3
gdfpVerbose

73.
Development Usage

73.1
Getting Started

73.2
Usage Bean

73.3
Settings

83.4
Obtaining Sequence Data

93.5
Settings Revisited

1.
GeneralDNAFileParser Errata
1.1
Supported file types.
NEXUS, FASTA, RST, GENERAL FORMAT (2), TREE FORMAT (3).
1.2
General Format.
The heuristic approach to locating taxa.

Name (4) Sequence (5)
The name and sequence must be in pair. They may exist on separate lines, and may be separated by white space or an ‘=’. The name may be repeated with additional sequence data following. You cannot have a name followed by sequence data for several differing taxa. This is a short-sighted algorithm (i.e. All sequence data read in following a name is assigned to that last name read).
Cannot have another taxon defined on the same line, must have a hard return.

1.3
Tree Format.
 The heuristic approach to locating trees.

TREE Name (6) Relation (7)
The word TREE (not case sensitive) MUST precede any tree relation described. This is followed by the name of the tree and then the relationship of taxa as defined. TREE, Name, and Relation may exist on separate lines, and be may separated by white space or an ‘=’. You may also include an [&u] or [&r] symbol between name and root to represent whether this tree is rooted.
Cannot have another tree defined on the same line, must have a hard return.

1.4
Taxon Name.
The heuristic approach to obtaining taxa names.

The name you give your taxon may be anything EXCEPT the following:

1. The name is comprised entirely of DNA symbols and nothing else.

a. This name will be recognized as DNA and therefore assigned to whatever name preceded this data.
2. It starts with the word NODE (8) (not case sensitive). This taxon and data will be interpreted as a node on an ancestral tree and be treated as such.
Cannot be more than 128 chars long

1.5
Sequence DNA Data.
The heuristic approach to obtaining sequence data.

This data must be comprised only of valid DNA symbols. These include: GROUP 1:
T, A, G, C, U, -, N, ?.
GROUP 2:
R, Y, M, K, S, W, H, B, V, D.
There are two additional flags that may be set if the algorithm is picking up unwanted symbols. The ALL_CAPS flag may be set to allow only capital letters when looking for sequence data. The EVEN_HANDED flag may be set higher to allow greater distinction between GROUP 1 and GROUP 2 above (ie. GROUP 2 will only be allowed a certain percentage of the overall data read in, otherwise be rejected).
ONLY the first twenty characters of data are used in this checking process.

1.6
Tree Name.
The heuristic approach to obtaining tree names.

The given tree name may not include the following symbols:
*, ?, <, >, |, :, /, \, “.

The given tree name generally becomes the folder in which is written the output files. These symbols cause a file written error, therefore, cannot be used. If the given name contains any of these symbols, trees will be name TREE#n. Where n will be an incrementing integer representing the number of that given tree (ie. TREE#1).
1.7
Tree Relation.
The heuristic approach to obtaining tree relations.
Relations must be correctly set up (ie. parenthesis, correct taxa, and taxa of exactly equal length). Relations may be represented in several fashions. The taxa in a relation may be shown as numbers, names, or from a translated block. The entire relation must be uniform. If names are used, they must be used throughout the entire relation.

When names are used, the program will scan the existing taxa for matches. If no matches are found, then the tree will wait for taxa to loaded that match its taxa names before being ready to be utilized.
When numbers are used without a translate block, the taxa (in the order read in) will be used. This could be very dangerous, as orders can get mixed up. Also, if there are not yet enough taxa to fill up this tree, it will wait until there are.
When a translate block is used the symbols in the relation will be translated to the names of the taxa that are provided from the block. If any don’t match up, then the tree will wait until there are some uploaded taxa that do.
NOTE: The life of a translate block is short and forward. Short means that translate blocks will not live outside of the trees of the file they are read in from. Forward means that a translate block can only be applied to trees following it. And it will be applied to all of them (that aren’t names) until another translate block is encountered.
1.8
Node name and sequence.
The heuristic approach to obtaining Nodes.

Nodal sequences contain exact sequence data (5). Nodal names must match node numbers located in comparison tree (9) (i.e. NODE #1). They must follow the same name sequence pair rules as stated above (2).
By nature, nodes are associated only with a single tree, no more, no less. Therefore, nodal sequences must be located in the exact same file as the one tree they belong to. They may not be in interleaved format.
Cannot have another node defined on the same line, must have a hard return.

1.9
Comparison Tree.
There is only one comparison (ancestral tree) per tree relation. This is always applied to the last tree read in. It will be determined by words that have a “..” in them. On either side should be the names or representative numbers corresponding to taxa and nodes. If more than one of these type values is intercepted before the tree is validated, the comparison tree with the most values is used. These values may spread to many lines, but may not be interrupted by any value not containing “..”. There must be a space or tab delimitating between each word.
1.10
Translate Block.

Translate block must be proceed by “translate” (not case sensitive). Then the translate block of symbols and the taxa they map too may follow on different lines, and must be separated by spaces or ‘,’ or tabs. The translate block must end with a ‘;’ or the program will not read in the file.

2.
User Settings

2.1
allCaps
This boolean value represents whether the sequence data must be all capitals or not. It is used to distinguish sequence data. It must be set to false to pick up on lower-case data.
2.2
evenHanded

Determines the percentage that the ambiguous codons may be over valid codons. This number should be set higher if false data is being read in, should be set lower if good data is not.
2.3
gdfpVerbose
The depth at which debug data will be printed to file. The lower the number, the more detailed and verbose the program will be. Should only be used when encountering problems opening valid data files. The file is printed to the specified results directory in a file named “verbose.txt”. Warning: A lower verbose number will printout its specified values (below), along with the values of numbers greater than it.

Levels:

0.
Potential:
All potential Taxa & Node entries – Names and Sequences.

1.
Potential:
All potential Tree entries – Names and Relations.

2.
Potential:
All potential Translate Block entries – Elements of.

3.
Potential:
All potential Ancestral Trees entries – Elements of.

4.
Located:
Nodes, Taxa, Trees, Translate Blocks, Ancestral Trees

5.
Validated:
Nodes, Taxa, Trees, Translate Blocks, Ancestral Trees

6.
Assigned:
Per Tree – Relation, Taxa, Nodes, Ancestral Trees.

7.
None:

Verbose mode is turned off.
3.
Development Usage

3.1
Getting Started
The GeneralDNAFileParser folder must be included in your class path or placed directly beside the source code.

Import the code by placing the following in your source code:

import GeneralDNAFileParser.DNAFileParserStub;
import GeneralDNAFileParser.GeneralDNAFileParser;

import GeneralDNAFileParser.DNAFileParserUsageBean;

3.2
Usage Bean

The usage bean is the predefined class DNAFileParserUsageBean. Its values are utilized by GeneralDNAFileParser, TaxaControl, and TreeControl. It contains user available settings that can change the way the program reads and interprets data (see 2. User Settings above). There are also two additional error settings included in the bean, errorWindow and logFile. errorWindow is a boolean determines if a GUI is available or not. If so, an error box will be display for each error. logFile is a String representing the validated path to an output log file. If this String is not null, then it will append to that file error encountered. These settings may be changed by directly accessing the bean, or indirectly, through a stub.
3.3
Settings
There are three different ways of establishing the parser settings.
1.
If the default settings are fine for your program, then simply create an object of GeneralDNAFileParser.

GeneralDNAFileParser fileParser = new GeneralDNAFileParser();

2.
If you need to change the default settings, simply create the parser (above) and then call getBean() to obtain the usage bean. This will allow you to change the settings.

DNAFileParserUsageBean bean = fileParser.getBean();

bean.setAllCaps(false);

bean.setErrorWindow(true);

etc…
3.
A stub has been provided for you – DNAFileParserStub.java. Simply create it with the validated path to a text file. The text file should contain the following entries.
allCaps

true
evenHanded
.5

gdfpVerbose
7

An example file has been included here – “user_settings.txt”. The stub will parse the file and locate settings given in the file. After this, simply create the GeneralDNAFileParser, passing in the bean created from DNAFileParserStub.java.
WARNING: File path will be verified when passed in. Must encapsulate

call in a try/catch statement.
DNAFileParserStub stub1 = new

DNAFileParserStub("./GeneralDNAFileParser/About/user_settings.txt");

GeneralDNAFileParser fileParser = new GeneralDNAFileParser(stub1.getBean());

This will allow you to create your own settings file where ever you want, and permit the user to modify parsing options on the fly. Also, as mentioned in 3.2 above, you may want to specify error messaging variables. To do this, simply pass into stub1, at creation, the values for errorWindow and logFile. These will be automatically incorporated into your bean. If you do not do this, then you will have to grab the bean (see #2. defined above) and set them yourself.
DNAFileParserStub stub1 = new
DNAFileParserStub("user_settings.txt", true, "log.txt");

3.4
Obtaining Sequence Data

There are two different calls to open a file, openFile and openNewFile. openNewFile will clear off any preexisting data, and then call openFile. openFile simply opens a file and adds data to existing data structures. This allows you to open multiple files that might be related to each other (i.e. Open the taxa file first, then a tree file).
WARNING: File path will be verified when passed in.

fileParser.openNewFile("C:/DNAFILE.txt");

Or
fileParser.openFile("C:/DNAFILE.txt");
Data may then simply be accessed by asking for it. Data for each sequence is stored in TaxaBean. These are then placed in a Hashtable, indexed on their names. Names for each TaxaBean are placed in a Vector. Below is an example on how to access the information:
Vector taxaNames = fileParser.getTaxaNames();
Hashtable taxa = fileParser.getTaxa();

TaxaBean thisTaxa = taxa.get((String)taxaNames.elementAt(i));

System.out.println(thisTaxa.getSequence());
Information for trees may be accessed in the same manner, except with getTrees() and getTreeNames(). Each tree then contains its own Vector of taxaNames and Hashtable of taxa associated with that tree. Thus GeneralDNAFileParser may be used to get just taxa, or build tree associations, as the developer needs it.
3.5
Settings Revisited

There is an additional functionality built into the stub. When writing to a settings file, a method has been provided to return a string of the values. Simply call either writeData() or resetData() to obtain a string that can be written as is to file. writeData returns a string of the current values to be placed in the settings file. resetData returns a string of the default values (for a reset action) to be placed in the settings file. It will also reset all current values in the bean to their defaults. The strings returned are exact replicas of the user_settings.txt example file.
outFile.println(stub1.writeData());
Or

outFile.println(stub1.resetData());

