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Abstract

Multiple Sequence Alignment (MSA) is a fundamental analysis method used in

bioinformatics and many comparative genomic applications. The time to compute an

optimal MSA grows exponentially with respect to the number of sequences. Conse-

quently, producing timely results on large problems requires more e�cient algorithms

and the use of parallel computing resources. In response to a growing volume of se-

quence data and the associated computational demand, parallel solutions to MSA are

emerging. Some popular parallel system architectures and parallel MSA algorithms are

presented along with examples of their performance. This overview discusses the most

successful parallel methods and provides an in-depth review of core contributions in

parallel MSA.

1 Introduction

Biologists and other researchers use multiple sequence alignment (MSA) as a fundamen-
tal analysis method to �nd similarities between nucleotide (DNA/RNA) and amino acid
(protein) sequences. The computational cost for an optimal sequence alignment is on the
order of O(LN) given L, the length of each sequence, and N, the number of sequences, which
means that the exact solution to the problem is intractable for data sets with more than a
few sequences. This complexity poses a challenge for sequence alignment programs to return
results within a reasonable time period as biologists compare greater numbers of sequences.
Consequently, many MSA approaches use heuristics to arrive at a sub-optimal solution in a
reasonable time.

Even with current heuristic methods, a sequential alignment program may run for days or
even weeks on a larger data set. Therefore, much research has been devoted to accelerating
MSA with parallel methods. The large data sets now under analysis demand both e�cient
algorithms and high-performance parallel systems to produce timely results.

2 Parallel Systems

Several types of parallel systems have emerged to address computationally intensive prob-
lems. The most popular types will be introduced in this section. Hybrid systems that
incorporate two or more of the following types are becoming more common.
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Multiprocessor. Current multiprocessor systems usually consist of a cluster of nodes
connected with a network. Each node typically has several processors or multi-core chips
that share on-board memory. Memory on separate nodes is called distributed memory.
Examples of these systems range from clusters of workstations to supercomputers with
high-performance networks. Multiprocessor systems are classi�ed as multiple-instruction,
multiple-data (MIMD) systems.

Vector. A vector processor has extra instructions that operate on several data elements
in parallel, thereby reducing the time needed to perform the same operation on several
data elements. For example, a vector instruction may add all the numbers in one linear
array to corresponding numbers in another. Using a scalar instruction, each element must
be added individually and would require more time. Vector systems can be classi�ed as
single-instruction, multiple-data (SIMD) systems. Current x86-based processors have vector
instructions in the form of Streaming SIMD Extensions (SSE).

Cell. Recently, the Cell Broadband Engine has received attention as an accelerator. How-
ever, further interest in the Cell may be diminished by the announcement from IBM to
discontinue Cell production for technical computing [7]. The multi-core Cell contains one
64-bit PowerPC RISC-processor and eight 128-bit vector processors. The PowerPC proces-
sor manages the other processors and typically runs an operating system. Each of the vector
processors have their own dedicated, local memory that is used for both code and data.
Communication between processors occurs with DMA transfers.

GPU. Another popular acceleration technology is the general purpose graphics processing
unit. Its commodity nature has sparked much interest outside of the graphics community as
an acceleration engine. GPUs work in conjunction with a host system as a co-processor to
o�oad compute-intensive kernels of code that can work somewhat independently in parallel
on similar types of data. Current GPUs contain several hundred processors that are capable
of �oating-point and integer operations. Processors are arranged in groups and communicate
through a complex hierarchy of memory systems.

FPGA. Field-programmable gate arrays (FPGAs) are used in recon�gurable computing
systems as hardware accelerators. Like other accelerators, they act as co-processors and
communicate with a host system through messages or shared memory. The hardware logic
on FPGAs is con�gurable, which allows multiple processing elements with custom operations
and data types to be programmed into the chip. These elements execute in parallel at
hardware speed on data supplied from the host. A local interconnect that is designed in
conjunction with the processing elements provides communication with very low overhead
when compared with commodity processors.

3 Parallel Algorithms

Many MSA algorithms have been implemented on parallel hardware. The algorithms can
be classi�ed into several di�erent categories depending on the underlying solution strategy.
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Some common classi�cations include optimal, progressive, iterative, stochastic, and hybrid.
Each of these will be discussed in more depth.

Parallel algorithms are often categorized by their granularity, which refers mainly to the
frequency of communication between parallel tasks. A coarse-grained algorithm typically
has fewer, larger tasks that communicate every second or less, while a �ne-grained algorithm
may have many, smaller tasks that communicate more frequently. The classi�cation is not
rigid, and some examples may not properly �t one category or the other.

This overview is organized �rst by the algorithm class and then by the system. Algorithm
details for each of the classes and ways to parallelize various MSA methods will be described
in each section. The examples discussed show a contribution in either overall performance
or in the application of a parallel algorithm. Only pairwise alignment algorithms that are
used in conjunction with MSA will be addressed. For parallel pairwise algorithms applied
to database search, a dated reference compiled by Zomaya [35] is available.

3.1 Optimal

First, pairwise alignment [8] will be de�ned and then extended for multiple alignment.
Pairwise alignment is de�ned separately to simplify the presentation and because it is often
used as a sub-procedure in heuristic MSA algorithms. Following a more formal de�nition,
some optimal parallel methods will be described.

3.1.1 Optimal Pairwise Algorithm

Given a pair of sequences A = a1a2...am and B = b1b2...bn of length |A| = m and
|B| = n from the �nite alphabet Σ, a pairwise sequence alignment is obtained by inserting
gap characters "-" into A and B. The aligned sequences A′ and B′ from the extended
alphabet Σ′ = Σ ∪ {"-"} are of equal length such that |A′| = |B′|.

An alignment score provides a metric to assess the quality of an alignment and represents
a measure of similarity between sequences. For pairwise alignment, it is the sum of similarity
values for each pair of aligned characters. Characters that match have a positive value while
those that mismatch have a lower or negative value. Any character aligned with a gap also
contributes a negative value to the alignment score. In practice, the similarity value comes
from a substitution matrix that re�ects the probability of substituting one character for
another. Let the function s : Σ× Σ→ Z determine the similarity of two characters and let
l denote the length of an alignment. The pairwise scoring function is then given by

FPW (A′, B′) =
∑
1≤i≤l

s(a′i, b
′
i).

The goal is to �nd an optimal pairwise alignment of A and B such that for all possible
alignments, the score is maximal. Pairwise alignment is typically solved with dynamic pro-
gramming (DP), which �lls a two-dimensional matrix with score values. Let H denote the
DP matrix and the element H[i, j] the similarity score of sequences a1a2...ai and b1b2...bj.
Let α represent the cost of inserting or deleting a gap. An optimal alignment is obtained by
maximizing the score in each element of H. The values of H are determined by the following
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recurrence relations for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

H[0, 0] = 0,

H[i, 0] = H[i− 1, 0] + α,

H[0, j] = H[0, j − 1] + α,

H[i, j] = max


H[i− 1, j − 1] + s(ai, bj),
H[i− 1, j] + α,
H[i, j − 1] + α.

The matrix �ll occurs in a forward scan from upper left to lower right because of depen-
dencies from neighboring elements. This dependency limits the amount of parallelism that
is achievable in computing the matrix to the elements along the scan wavefront. Following
a forward scan, traceback starts from a designated lower right position and follows a path
to upper left, thereby determining the best alignment.

3.1.2 Optimal MSA Algorithm

The de�nition of a multiple sequence alignment is a generalization of pairwise alignment.
Given an ordered set of sequences S = 〈s1, s2, ...sn〉, a multiple sequence alignment (MSA)
A = 〈a1, a2, ...an〉 is obtained by inserting gap characters "-" into si such that the aligned
sequences ai ∈ A are of equal length with |ai| = k.

To determine the quality of a MSA, a more complex scoring function than the one for
pairwise alignment is needed. Various assumptions about the relationship between multi-
ple sequences lead to several possible scoring methods. The weighted sum-of-pairs (WSP)
method is popular among MSA programs. It assumes that sequences are related by an
evolutionary tree and that sequence weights are derived from this tree. The WSP method
calculates a total score from the weighted pairwise score of all sequences. Let FWSP : A→ Z
be a WSP scoring function for an MSA A such that

FWSP (A) =
∑

1≤i<j≤n

wi,j

∑
1≤l≤k

s(ai[l], aj[l])

where n is the number of sequences, k is the length of aligned sequences, wi,j is the weight
given to a pair of sequences, and the function s : Σ × Σ → Z determines the similarity of
symbol ai[l] with aj[l].

The choice of scoring method inherently a�ects the nature of the alignment algorithm.
After choosing a scoring function, a suitable algorithm is determined to maximize the score
and thereby produce an optimal alignment. More speci�cally, the MSA problem is to �nd an
alignment A given a set of sequences S such that for all possible alignments of S, the score
FWSP (A) is maximal. Several scoring methods and MSA algorithms have been proposed and
are described in a thorough review by Gotoh [9].

The DP solution to pairwise alignment may be extended to multiple alignment with
an N -dimensional scoring matrix where N is the number of sequences. However, because
of exponential time and space scaling problems, optimal alignment algorithms like DP are
limited to a small number of sequences.
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3.1.3 Optimal Parallel Methods

Multiprocessor. Even though optimal MSA is challenged with intractability, researchers
have tried to push the capabilities a little further with parallel implementations. Helal et
al. [10] described a method to partition an N -dimensional scoring matrix among several
processors using a representation based on Mathematics of Arrays (MoA). Waves of compu-
tation proceed through partitions in parallel following a hyper-surface. MoA manages the
dependencies between partitions and the scheduling of waves. A relative speedup of about
40 is seen with 64 processors for six sequences with a length of approximately ten.

FPGA. Masuno et al. [19] used an FPGA to accelerate optimal MSA for up to �ve,
short sequences. The N -dimensional scoring matrix is computed in two-dimensional slices
by the FPGA. Compared with a 2 GHz Pentium 4, a speedup of 298 is demonstrated when
aligning four sequences and a speedup of 104 is shown for �ve sequences. However, alignment
performance degrades substantially with more than �ve sequences. The maximum sequence
length that can be aligned is limited by the amount of external memory on the FPGA board.
When aligning four sequences, the length limit is about 256, and for �ve sequences, the limit
is about 64.

3.2 Progressive

The most common heuristic algorithm used to solve the MSA problem in practical time,
both sequentially and in parallel, is progressive alignment. Other heuristic algorithms have
been studied, but they generally provide poorer quality or su�er from greater computational
cost with limited improvement in alignment quality [23]. Almost all of the parallel MSA
examples referenced in this section are based on the popular ClustalW program [31]. Several
reasons for this popularity exist. First of all, the method has been trusted by biologists
for almost two decades with quality that is still comparable to more recent algorithms.
The trust is gained with alignment results that are similar to biologists expectations. Even
though newer methods may have better performance or quality, ClustalW has become a
recognized benchmark standard. The algorithm provides fairly good alignments across a
diverse range of sequence types. Also, the alignment algorithm is relatively fast, simple,
and understandable. The source code is freely available and well supported, which provides
broad access to biologists and allows researchers to experiment with algorithmic variations
without starting from scratch. An outline of the progressive alignment algorithm will be
given before describing the parallel methods.

3.2.1 Progressive Algorithm

Progressive algorithms successively perform pairwise alignment on the most similar se-
quences and groups of sequences, until all sequences are aligned. A progressive alignment is
accomplished in three main stages.

Stage 1: All sequences are compared pairwise with each other and the score is stored in a
similarity matrix.
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Figure 1: The three stages of progressive alignment: (a) compare all sequences to form a
similarity matrix; (b) use the similarity scores and a clustering method to build a guide tree;
and (c) progressively align sequences si and groups of sequences pi,j,... in an order guided by
the tree.

Table 1: Computational complexity of ClustalW stages given N , the number of sequences,
and L, their typical length. An analysis is given by Edgar [5].

Step Order (time)

Stage 1 O(N2L2)
Stage 2 O(N3)
Stage 3 O(N3 +NL2)

Stage 2: A guide tree is constructed from the similarity matrix, with the leaves of the tree
representing the sequences.

Stage 3: Following the branches of the guide tree from the leaves to the root, sequences and
groups are pairwise aligned.

In the �rst stage, a comparison score is usually determined by counting of the number of
identical characters in a pairwise alignment. Next, the second stage groups the most similar
sequences together on terminal branches of a guide tree using a clustering method. This guide
tree indicates the alignment order in the third stage where each node speci�es a pairwise
alignment (see Figure 1). Two groups of sequences are typically aligned with DP in a similar
way to sequences; however, gaps inserted into groups occur a whole column at a time. The
computational complexity of each stage is shown in Table 1.
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3.2.2 Progressive Parallel Methods

Vector. The �rst published attempt to parallelize MSA was described by Tajima [28]. Only
the DP calculations were vectorized on a FACOM VP-200 vector supercomputer. However,
accelerating DP calculation with vector parallelism is problematic because vector machines
typically do not include a table look-up vector operation that is needed to return the similar-
ity score between two characters. To avoid a table look-up, the implementation by Tajima
returns zero if symbols are equal and one otherwise. Parallelism was introduced with a
FORTRAN 77/VP compiler that vectorizes DO loops when possible for a speedup of 4
on sequence-to-sequence alignment and a speedup of 2�3 on sequence-to-group alignment.
A more recent attempt to use vector parallelism was reported by Chaichoompu and Kitti-
tornkun [3] with only a speedup of 1.23 on ClustalW. The Intel C++ compiler was used with
the /QxP option to generate Streaming SIMD Extensions (SSE) instructions for a Pentium
processor.

Multiprocessor. Mikhailov et al. [20] parallelized all three stages of ClustalW on a shared-
memory SGI Origin machine to demonstrate a speedup of 10 with 16 processors. The �rst
stage is easily parallelized since each of the pairwise comparisons can be executed inde-
pendently and the results stored in a similarity matrix without any con�ict. Mikhailov
introduced coarse-grained, task-level parallelism with OpenMP [1] directives. Since the �rst
stage typically dominates the run time of ClustalW, most of the speedup comes from paral-
lelizing this stage. The degree of parallelism with this method is limited to the number of
all-to-all pairwise comparisons, which is N(N − 1)/2.

A notable feature of Mikhailov's e�ort is the parallelization of the guide tree calculation
in the second stage, whereas it is often overlooked in many other implementations because
it requires the least computation time of all the stages. The clustering algorithm used in
the second stage repeatedly �nds a minimum element in the similarity matrix. Mikhailov's
method searches each row of the matrix in parallel for the minimum element and then reduces
the row-wise results to �nd the overall minimum. In this case, the parallelism is limited to
the number of rows in the similarity matrix.

Since Mikhailov uses loop-level parallelism, only a portion of the available parallelism
was realized in the third stage. During group-to-group alignment, ClustalW calls a function
to determine the score for aligning two pro�le positions. A pro�le is derived from a group of
sequences and consists of the character frequencies for each column in a group. A temporary
matrix with dimensions equal to the length of each pro�le can be used to store the scores.
Mikhailov's method precalculates each element of the scoring matrix in parallel.

Using message passing on a distributed-memory system, Li [13] also parallelized all the
stages in ClustalW-MPI for an overall speedup of 14.6 on a 16 processor cluster. The test
data consisted of 500 protein sequences with a length of 1100. Li used a �xed-size chunking
strategy in the �rst stage to schedule 80 pairwise alignments to processors in a batch, thus
reducing the frequency and overhead of communication. Li was the �rst to publish more
sophisticated parallel methods for the third stage of progressive alignment. One method
computes alignments at terminal nodes of the guide tree in parallel (see Figure 1). The
problem with this method is that an unbalanced tree can severely limit the number of
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Figure 2: Myers and Miller subdivision algorithm [21].

parallel tasks. Furthermore, even a balanced tree will have limited parallelism near the root.
In practice, the guide tree is usually unbalanced.

Another parallel method used by Li is based on the recursive Myers-Miller DP algorithm
[21]. The Myers-Miller algorithm solves the pairwise alignment problem by dividing the DP
matrix in half and then scanning from opposite corners towards the middle (see Figure 2).
Where the two scans meet, an optimal midpoint in the traceback path is determined. This
point becomes the corner of two subblocks which are in turn divided and scanned for mid-
points. The recursion continues until a trivial alignment is encountered. The forward and
backward scans can occur brie�y in parallel, but must join before determining the midpoint.
Each time a midpoint is found, two new subtasks can be spawned for the subblocks. Similar
to guide-tree parallelism, recursive parallelism is also limited in the �rst steps. Using both
guide-tree and recursive parallelism, Li only achieved a speedup of 4.3 on 16 processors in
the third stage, while the �rst stage realized a customary linear speedup of 15.8.

The best performance reported for ClustalW using multiprocessors was by Tan et al.
[29] with an overall speedup of 35 on an SMP-cluster system with 40 nodes and 80 proces-
sors. A speedup of 80 and 9.2 was obtained for the �rst and third stages respectively. In
the third stage, Tan's method also distributes group-to-group alignments to system nodes
using a method similar to Li that is based upon guide-tree and recursive parallelism. The
main contribution comes from computing the forward and backward DP scans in parallel on
processors within a node.

Load balancing strategies can improve the parallel e�ciency in the third stage. Luo
et al. [18] proposed a dynamic scheduling algorithm that estimates the execution time and
communication cost for each task. Since the input for a node in the guide tree is dependent on
a prior node, task costs are dynamically estimated after each task completes. The scheduler
considers these costs and the current workload of the processors when making scheduling
decisions. A peak e�ciency of 0.75 is achieved with a speedup of 6 on 8 processors. In a later
work, Tan et al. [30] also proposed a load balancing strategy based on tree accumulation. A
speedup of 18 was achieved with 32 processors when aligning 3998 protein sequences.

Cell. Sachdeva et al. [26] ported the ClustalW application to the Cell platform for a Stage 1
speedup of 6.51 compared with a Xeon (Woodcrest) processor, but the overall performance
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was slower by a factor of 1.58. The signi�cance of their e�ort comes from being the �rst to
experiment with the Cell as a MSA accelerator and illuminating the challenges that must
be overcome to achieve a performance improvement. Most of the speedup in the �rst stage
comes from vectorizing the pairwise alignment computations and executing them in parallel
on the Cell's eight Synergistic Processing Units (SPUs). However, vector performance is
challenged on the SPUs with multiple branches in the DP code and also with table look-ups
for the similarity score. The second and third stages were executed on the Cell's single,
64-bit Power Processing Unit (PPU). The lower performance of a PPU compared with a
Xeon processor explains the overall performance degradation.

Vandierendonck et al. [32] accelerated ClustalW on two Cell BEs by a factor of 8 when
compared with a 2.13 GHz Intel Core2 Duo processor running a single thread. Stage 1 is
parallelized by vectorizing DP matrix calculations and scheduling the independent pairwise
alignment tasks across the 16 available SPUs. Vandierendonck applied loop unrolling and
loop skewing optimizations to compute the DP scan with diagonal vector operations. These
optimizations are also applied to the group-to-group DP calculations in the third stage.
Vandierendonck discovered that a signi�cant portion of the third stage is spent calculating
the similarity score between two pro�le positions. When comparing pro�le positions, all
the character and gap frequencies must be considered. Similar to Mikhailov, these scores
are precalculated in parallel, but in Vandierendonck's case, a more sophisticated scheme is
proposed to pass precomputed scores from producer tasks through queues to consumer tasks.
The PPU executes the sequential portions of ClustalW and load balances worker threads
across SPUs with a dynamic scheduler.

Using a Playstation3, Wirawan et al. [33] achieved a peak speedup of 108 for the �rst stage
when compared to a 3.0 GHz Pentium 4. The data set consisted of 1000 protein sequences
with an average length of 446. Only the �rst stage was accelerated, and no overall speedup
was reported. Wirawan used a sequence comparison algorithm that di�ers from ClustalW
and has been previously demonstrated on FPGA [24] and GPU [15] accelerators. A count
of matching characters is normally determined from an alignment, but in this algorithm the
number of identical characters is computed directly by the recurrence relations during the
forward scan of DP. By avoiding a full alignment, which requires a traceback procedure,
better performance is realized.

GPU. Weiguo Liu et al. [15] were the �rst to publish MSA acceleration on GPUs and
achieved a Stage 1 speedup of 11.7 compared with a 3.0 GHz Pentium 4 processor. Stages 2
and 3 were executed sequentially on the Pentium processor for an overall speedup of 7.2. A
single GPU card (GeForce 7800 GTX) was programmed with OpenGL Shading Language
(GLSL). The sequence comparison algorithm uses the same recurrence relations demon-
strated on FPGA [24] and Cell [33] accelerators to assist in calculating the number of iden-
tical characters.

Yongchao Liu et al. [16] demonstrated an overall peak speedup of 41.53 on 1000 sequences
of average length 858 with 1 GPU card (GeForce GTX 280) when compared with a 3.0 GHz
Pentium 4. All three stages of ClustalW are accelerated by the GPU, with the parallel
portions programmed using CUDA. When pairwise-alignment and guide-tree parallelism is
low, cells of DP matrix calculations are computed in parallel. Since CUDA does not support
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recursion, a stack-based iterative version of the Myers-Miller algorithm was developed. This
new version was used for both pairwise-alignments and group-to-group alignments. A sepa-
rate paper [17] describes the parallel algorithm for the second stage. The neighbor-joining
algorithm [27] is accelerated by computing the two innermost loops in parallel. Threads
that compute minimum elements for square blocks of the distance matrix are scheduled on
the GPU. The best speedup obtained in each of the three stages is 47.13, 11.08, and 5.9
respectively.

FPGA. Recon�gurable computing approaches accelerate the �rst stage of MSA by com-
puting pairwise alignments with a pipeline of processing elements (PEs). This linear systolic
array operates with �ne-grained parallelism along a wavefront of cells in the DP matrix. The
ClustalW algorithm does not use the score obtained from a pairwise alignment directly. In-
stead, the number of identical characters in an alignment are used to compute the fractional
identity. Oliver et al. [25] accelerates the �rst stage of ClustalW, but leaves the second
and third stages for execution on the host processor. Rather than actually aligning the se-
quences, custom hardware is developed to count the number of identical characters during
the forward scan without performing traceback. The best overall speedup was 13.3 compared
to ClustalW running on a 3.0 GHz Pentium 4. For Stage 1, a PCI-based accelerator board
reached a peak speedup of 50.9 with 92 PEs in a Xilinx XC2V6000.

In another approach, Lin et al. [14] demonstrated an overall speedup of 34.6 using 10
Altera Stratix PEIS30 with a total of 3072 PEs. For the �rst stage, a speedup of 1697.5
was achieved when compared with a 2.8 GHz Xeon. The number of identical characters is
deduced from the comparison score returned from the accelerator and the sequence lengths.

3.3 Progressive-Iterative Methods

Since progressive alignment is a greedy strategy, mistakes in placing gaps at early stages
will remain throughout the process. To compensate for early mistakes, iterative re�nement
algorithms have been developed that repeat certain stages of the process a �xed number of
times or until there is no improvement in the alignment quality. Group-to-group alignment is
usually the most commonly iterated portion of progressive alignment. A more recent version
of ClustalW now includes an iteration option to improve alignment quality, but this quality
comes at the expense of more run time. To compensate for the lengthened run time, parallel
methods have been introduce to some of the iterative applications. A few programs other
than ClustalW have gained enough acceptance to warrant a parallelization e�ort.

MUSCLE. The iterative approach of MUSCLE starts with two rounds of basic progres-
sive alignment and then repeats tree-guided group-to-group alignments until convergence is
reached. As shown in Figure 3, a round consists of the three stages that are familiar to pro-
gressive alignment. The �rst two rounds derive pairwise similarity scores during Stage 1 in
di�erent ways, wherein the �rst round uses a faster alignment-free method based on k-mers
and the second round uses the multiple alignment from the prior round.

Deng et al. [4] parallelized MUSCLE for a speedup of 15.2 on a 16 processor SMP system
using OpenMP. The target data set consists of 50�150 proteins of average length 330. In
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Figure 3: MUSCLE Algorithm [6]

the �rst and second rounds, group-to-group alignment following the guide tree is executed in
parallel. A queuing module is used to schedule the tasks and make sure children nodes are
aligned before parent nodes; however, as discussed before, this tree-based method has limited
parallelism, and consequently, poor performance is reported for this stage with a speedup
between 1 and 2. Most of the speedup comes from parallelizing and executing independently
the all-to-all pairwise comparisons in the second round. Deng opted to use a more compute
intensive probabilistic sequence comparison algorithm in the second round; therefore, most
of the execution time was spent in this stage.

PRALINE. The progressive method of PRALINE has a pairwise sequence alignment stage
and a progressive pro�le alignment stage that correspond to Stages 1 and 3, but the guide
tree formation of Stage 2 is avoided. Instead of following a guide tree to align sequences
and groups, PRALINE repeatedly chooses the next highest scoring pair to align until all
sequences and groups are aligned to produce the �nal alignment. The highest scoring pair
is determined by comparing all sequences with each other at �rst, and then comparing the
aligned pair with the remaining sequences after each iteration.

A parallel implementation of PRALINE by Kleinjung et al. [12] realized a speedup of 10
with 25 processors on a distributed system using a set of 200 random sequences that are 200
residues in length. The pairwise sequence alignment stage is parallelized in the usual way
by distributing pairwise alignments tasks to separate processors. In the progressive pro�le
alignment stage, only the comparison of sequences and groups is parallelized. This occurs
in a similar way to the �rst stage by distributing the comparison tasks, but each iteration
must collect the results before selecting the highest score.

T-Co�ee. While T-Co�ee follows a progressive strategy, the �rst stage consists of a few
extra steps that generate a library of pairwise alignments. This library is later used in the

11



third stage to score alignments with a consistency-base objective function. After a round
of basic progressive alignment, T-Co�ee can iteratively re�ne the multiple alignment as an
option. Each sequence is removed in turn from the multiple alignment and realigned with
the remaining sequences.

Zola et al. [34] implemented a parallel version of T-Co�ee using a master-worker ar-
chitecture and message passing to obtain an overall speedup of about 40 on a system with
80 CPUs. Most of the parallelism comes from distributing pairwise alignment tasks with
dynamic scheduling for a near linear speedup during library generation. In the progressive
alignment stage, a sophisticated dynamic scheduling strategy is used that follows the guide
tree, but almost no speedup is seen in this stage with more than 16 CPUs.

3.4 Stochastic Methods

Stochastic methods are used to solve optimization problems such as MSA. Two represen-
tative methods are simulated annealing and genetic algorithms. They are iterative in nature
and produce a new prospective alignment as a random variation of a prior alignment. In
each iteration, the prospective alignment is scored by an objective function to determine if
it should be kept as the best found thus far. Since the alignments are prospective, many can
be generated and evaluated in parallel. Creative methods are devised to e�ciently update
parallel tasks with better alignments that are found in other tasks at regular intervals. Since
stochastic methods are generally much slower than other methods, they are often used to
re�ne a seed alignment produced by a faster method.

Simulated Annealing. Ishikawa et al. [11] experimented with two parallel approaches to
simulated annealing on a distributed system with 64 processing elements (PEs) connected
by a 2-D mesh. The best approach, called temperature parallel SA, assigns each PE a �xed
temperature for the duration of the simulation. After a �xed number of iterations, half
the PEs exchange their best solution with one other PE that is close in temperature. The
parallel algorithm reached a comparable scoring alignment in about one-�fth the time of the
sequential simulated annealing algorithm. A conventional progressive algorithm was about
twice as fast as the parallel algorithm; however, the parallel algorithm did eventually produce
an alignment with a better score.

Genetic. Genetic algorithms are also known as evolutionary algorithms, since solutions
or individuals evolve over time through mutation, crossover, and selection. Anbarasu et
al. [2] implemented the island genetic algorithm in parallel using C and PVM on a dis-
tributed system. The method evolved �ve subpopulations of 20 individuals (alignments) in
parallel, presumably on 5 processors. Better alignments are periodically sent to neighboring
populations through a process called migration. Sending one migrant to a neighbor every
50 generations gave the best results. When aligning 15 protein sequences of length 292, the
parallel algorithm ran ten times slower than ClustalW, but it achieved a slightly better score.

A more recent e�ort by Nguyen et al. [22], based on the Parallel Hybrid Genetic Al-
gorithm, achieved a speed up of 6.6 on an eight processor cluster with the BAliBASE data
set. Through a coarse-grained parallel approach, subpopulation evolution occurs on sepa-
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Figure 4: Parallel MSA references by algorithm

rate processors with periodic migration. The hybrid approach uses a progressive alignment
algorithm to create the initial subpopulations and a genetic algorithm to re�ne them. Align-
ment quality was slightly better than ClustalW and a few other popular progressive-iterative
alignment programs.

4 Discussion

Two parallel MSA approaches that divide or decompose the problem before using an
underlying MSA method will not be discussed in this overview. These methods sit on top of
other MSA methods (e.g. optimal, progressive) and typically reduce the alignment quality
compared to the underlying alignment method in exchange for faster run times. Any of the
discussed methods could be used as the underlying MSA method.

Most of the MSA algorithms implemented on parallel systems are based on a progressive
strategy. Figure 4 shows the total number of parallel system references for several MSA
algorithm classes and the di�erent system types within each class. Progressive algorithms
have the highest number of references and multiprocessor systems dominate the number of
systems in all but the optimal class.

Compared with other MSA algorithms, progressive alignment algorithms have demon-
strated the highest performance. The best known overall performance is reported by
Yongchao Liu et al. [16] with an overall speedup of 41.53 for ClustalW on a GPU com-
pared with a 3.0 GHz Pentium 4. While stochastic algorithms may o�er more potential
parallelism, they are slower by an order of magnitude or more and have not taken the lead
on performance.

In the last few years, there has been a surge in MSA research using accelerator technol-
ogy. Figure 5 shows the number of references for parallel MSA systems on a yearly basis.
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Figure 5: Parallel MSA references by year

The trend towards accelerator-based research started in 2005; however, research based only
on multiprocessor systems appears to be waning. Since 2007, accelerator-based systems have
accounted for at least half of the published parallel MSA research. Accelerator-based tech-
nology, whether existing or new, will likely play a signi�cant role in future parallel MSA
research.
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