
 )LQGLQJ�+LGGHQ�
0HVVDJHV
LQ�'1$

Phillip Compeau & Pavel Pevzner

http://bioinformaticsalgorithms.org

© 2015



Welcome!

Thank you for joining us! As you explore this book, you will find a number of active
learning components that help you learn the material at your own pace.

1. CODE CHALLENGES ask you to implement the algorithms that you will en-
counter (in any programming language you like). These code challenges are
hosted in the “Bioinformatics Textbook Track” location on Rosalind (http://
rosalind.info), a website that will automatically test your implementations.

2. CHARGING STATIONS provide additional insights on implementing the algo-
rithms you encounter. However, we suggest trying to solve a Code Challenge
before you visit a Charging Station.

3. EXERCISE BREAKS offer “just in time” assessments testing your understanding
of a topic before moving to the next one.

4. STOP and Think questions invite you to slow down and contemplate the current
material before continuing to the next topic.

5. DETOURS provide extra content that didn’t quite fit in the main text. DETOUR

6. FINAL CHALLENGES ask you to apply what you have learned to real experi-
mental datasets.

This textbook powers our popular online course on Coursera. We encourage you
to sign up for a session and learn this material while interacting with thousands of
other talented students from around the world. You can also find lecture videos and
PowerPoint slides at the textbook website, http://bioinformaticsalgorithms.org.
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W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

A Journey of a Thousand Miles. . .

Genome replication is one of the most important tasks carried out in the cell. Before
a cell can divide, it must first replicate its genome so that each of the two daughter
cells inherits its own copy. In 1953, James Watson and Francis Crick completed their
landmark paper on the DNA double helix with a now-famous phrase:

It has not escaped our notice that the specific pairing we have postulated immediately
suggests a possible copying mechanism for the genetic material.

They conjectured that the two strands of the parent DNA molecule unwind during
replication, and then each parent strand acts as a template for the synthesis of a new
strand. As a result, the replication process begins with a pair of complementary strands
of DNA and ends with two pairs of complementary strands, as shown in Figure 1.1.

FIGURE 1.1 A naive view of DNA replication. Nucleotides adenine (A) and thymine (T)
are complements of each other, as are cytosine (C) and guanine (G). Complementary
nucleotides bind to each other in DNA.

Although Figure 1.1 models DNA replication on a simple level, the details of replica-
tion turned out to be much more intricate than Watson and Crick imagined; as we will
see, an astounding amount of molecular logistics is required to ensure DNA replication.

At first glance, a computer scientist might not imagine that these details have any
computational relevance. To mimic the process in Figure 1.1 algorithmically, we only
need to take a string representing the genome and return a copy of it! Yet if we take
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W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

the time to review the underlying biological process, we will be rewarded with new
algorithmic insights into analyzing replication.

Replication begins in a genomic region called the replication origin (denoted oriC)
and is performed by molecular copy machines called DNA polymerases. Locating
oriC presents an important task not only for understanding how cells replicate but
also for various biomedical problems. For example, some gene therapy methods use
genetically engineered mini-genomes, which are called viral vectors because they are
able to penetrate cell walls (just like real viruses). Viral vectors carrying artificial
genes have been used in agriculture, such as to engineer frost-resistant tomatoes and
pesticide-resistant corn. In 1990, gene therapy was first successfully performed on
humans when it saved the life of a four-year-old girl suffering from Severe Combined
Immunodeficiency Disorder; the girl had been so vulnerable to infections that she was
forced to live in a sterile environment.

The idea of gene therapy is to intentionally infect a patient who lacks a crucial
gene with a viral vector containing an artificial gene that encodes a therapeutic protein.
Once inside the cell, the vector replicates and eventually produces many copies of the
therapeutic protein, which in turn treats the patient’s disease. To ensure that the vector
actually replicates inside the cell, biologists must know where oriC is in the vector’s
genome and ensure that the genetic manipulations that they perform do not affect it.

In the following problem, we assume that a genome has a single oriC and is rep-
resented as a DNA string, or a string of nucleotides from the four-letter alphabet
{A,C,G,T}.

Finding Origin of Replication Problem:

Input: A DNA string Genome.
Output: The location of oriC in Genome.

STOP and Think: Does this biological problem represent a clearly stated compu-
tational problem?

Although the Finding Origin of Replication Problem asks a legitimate biological ques-
tion, it does not present a well-defined computational problem. Indeed, biologists
would immediately plan an experiment to locate oriC: for example, they might delete
various short segments from the genome in an effort to find a segment whose deletion
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W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

stops replication. Computer scientists, on the other hand, would shake their heads and
demand more information before they can even start thinking about the problem.

Why should biologists care what computer scientists think? Computational meth-
ods are now the only realistic way to answer many questions in modern biology. First,
these methods are much faster than experimental approaches; second, the results of
many experiments cannot be interpreted without computational analysis. In particular,
existing experimental approaches to oriC prediction are rather time consuming. As
a result, oriC has only been experimentally located in a handful of species. Thus, we
would like to design a computational approach to find oriC so that biologists are free to
spend their time and money on other tasks.

Hidden Messages in the Replication Origin

DnaA boxes

In the rest of this chapter, we will focus on the relatively easy case of finding oriC in
bacterial genomes, most of which consist of a single circular chromosome. Research has
shown that the region of the bacterial genome encoding oriC is typically a few hundred
nucleotides long. Our plan is to begin with a bacterium in which oriC is known, and
then determine what makes this genomic region special in order to design a computa-
tional approach for finding oriC in other bacteria. Our example is Vibrio cholerae, the
bacterium that causes cholera; here is the nucleotide sequence appearing in its oriC:

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

How does the bacterial cell know to begin replication exactly in this short region
within the much larger Vibrio cholerae chromosome, which consists of 1,108,250 nu-
cleotides? There must be some “hidden message” in the oriC region ordering the cell to
begin replication here. Indeed, we know that the initiation of replication is mediated
by DnaA, a protein that binds to a short segment within the oriC known as a DnaA

box. You can think of the DnaA box as a message within the DNA sequence telling the
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DnaA protein: “bind here!” The question is how to find this hidden message without
knowing what it looks like in advance — can you find it? In other words, can you
find something that stands out in oriC? This discussion motivates the following problem.

Hidden Message Problem:
Find a “hidden message” in the replication origin.

Input: A string Text (representing the replication origin of a genome).
Output: A hidden message in Text.

STOP and Think: Does this problem represent a clearly stated computational
problem?

Hidden messages in “The Gold-Bug”

Although the Hidden Message Problem poses a legitimate intuitive question, it again
makes absolutely no sense to a computer scientist because the notion of a “hidden
message” is not precisely defined. The oriC region of Vibrio cholerae is currently just as
puzzling as the parchment discovered by William Legrand in Edgar Allan Poe’s story
“The Gold-Bug”. Written on the parchment was the following:

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;1+(;:+*8
!83(88)5*!;46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5

*-4)8‘8*;4069285);)6!8)4++;1(+9;48081;8:8+1;48!85:4
)485!528806*81(+9;48;(88;4(+?34;48)4+;161;:188;+?;

Upon seeing the parchment, the narrator remarks, “Were all the jewels of Golconda
awaiting me upon my solution of this enigma, I am quite sure that I should be unable
to earn them”. Legrand retorts, “It may well be doubted whether human ingenuity can
construct an enigma of the kind which human ingenuity may not, by proper application,
resolve”. He reasons that the three consecutive symbols ";48" appear with surprising
frequency on the parchment:

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;1+(;:+*8
!83(88)5*!;46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5
*-4)8‘8*;4069285);)6!8)4++;1(+9;48081;8:8+1;48!85;4
)485!528806*81(+9;48;(88;4(+?34;48)4+;161;:188;+?;

6
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Legrand had already deduced that the pirates spoke English; he therefore assumed
that the high frequency of ";48" implied that it encodes the most frequent English
word, "THE". Substituting each symbol, Legrand had a slightly easier text to decipher,
which would eventually lead him to the buried treasure. Can you decode this message
too?

53++!305))6*THE26)H+.)H+)TE06*THE!E‘60))E5T1+(T:+*E
!E3(EE)5*!TH6(TEE*96*?TE)*+(THE5)T5*!2:*+(TH956*2(5

*-H)E‘E*TH0692E5)T)6!E)H++T1(+9THE0E1TE:E+1THE!E5TH
)HE5!52EE06*E1(+9THET(EETH(+?3HTHE)H+T161T:1EET+?T

Counting words

Operating under the assumption that DNA is a language of its own, let’s borrow
Legrand’s method and see if we can find any surprisingly frequent “words” within
the oriC of Vibrio cholerae. We have added reason to look for frequent words in the
oriC because for various biological processes, certain nucleotide strings often appear
surprisingly often in small regions of the genome. For example, ACTAT is a surprisingly
frequent substring of

ACAACTATGCATACTATCGGGAACTATCCT.

We use the term k-mer to refer to a string of length k and define COUNT(Text, Pattern)
as the number of times that a k-mer Pattern appears as a substring of Text. Following
the above example,

COUNT(ACAACTATGCATACTATCGGGAACTATCCT, ACTAT) = 3.

Note that COUNT(CGATATATCCATAG, ATA) is equal to 3 (not 2) since we should ac-
count for overlapping occurrences of Pattern in Text.

To compute COUNT(Text, Pattern), our plan is to “slide a window” down Text, check-
ing whether each k-mer substring of Text matches Pattern. We will therefore refer to
the k-mer starting at position i of Text as Text(i, k). Throughout this book, we will often
use 0-based indexing, meaning that we count starting at 0 instead of 1. In this case,
Text begins at position 0 and ends at position |Text|� 1 (|Text| denotes the number of
symbols in Text). For example, if Text = GACCATACTG, then Text(4, 3) = ATA. Note that
the last k-mer of Text begins at position |Text|� k, e.g., the last 3-mer of GACCATACTG
starts at position 10� 3 = 7. This discussion results in the following pseudocode for
computing COUNT(Text, Pattern).

7
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PATTERNCOUNT(Text, Pattern)
count 0
for i 0 to |Text|� |Pattern|

if Text(i, |Pattern|) = Pattern
count count + 1

return count

1A

The Frequent Words Problem

We say that Pattern is a most frequent k-mer in Text if it maximizes COUNT(Text, Pattern)
among all k-mers. You can see that ACTAT is a most frequent 5-mer for Text =

ACAACTATGCATACTATCGGGAACTATCCT, and ATA is a most frequent 3-mer for Text =
CGATATATCCATAG.

STOP and Think: Can a string have multiple most frequent k-mers?

We now have a rigorously defined computational problem.

Frequent Words Problem:
Find the most frequent k-mers in a string.

Input: A string Text and an integer k.
Output: All most frequent k-mers in Text.

1B

A straightforward algorithm for finding the most frequent k-mers in a string Text checks
all k-mers appearing in this string (there are |Text|� k + 1 such k-mers) and then com-
putes how many times each k-mer appears in Text. To implement this algorithm, called
FREQUENTWORDS, we will need to generate an array COUNT, where COUNT(i) stores
COUNT(Text, Pattern) for Pattern = Text(i, k) (see Figure 1.2).

Text A C T G A C T C C C A C C C C
COUNT 2 1 1 1 2 1 1 3 1 1 1 3 3

FIGURE 1.2 The array COUNT for Text = ACTGACTCCCACCCC and k = 3. For exam-
ple, COUNT(0) = COUNT(4) = 2 because ACT (shown in boldface) appears twice in
Text at positions 0 and 4.

8
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FREQUENTWORDS(Text, k)
FrequentPatterns an empty set
for i 0 to |Text|� k

Pattern the k-mer Text(i, k)
COUNT(i) PATTERNCOUNT(Text, Pattern)

maxCount maximum value in array COUNT

for i 0 to |Text|� k
if COUNT(i) = maxCount

add Text(i, k) to FrequentPatterns

remove duplicates from FrequentPatterns
return FrequentPatterns

STOP and Think: How fast is FREQUENTWORDS?

Although FREQUENTWORDS finds most frequent k-mers, it is not very efficient. Each
call to PATTERNCOUNT(Text, Pattern) checks whether the k-mer Pattern appears in posi-
tion 0 of Text, position 1 of Text, and so on. Since each k-mer requires |Text|� k + 1 such
checks, each one requiring as many as k comparisons, the overall number of steps of
PATTERNCOUNT(Text, Pattern) is (|Text|� k + 1) · k. Furthermore, FREQUENTWORDS

must call PATTERNCOUNT |Text|� k + 1 times (once for each k-mer of Text), so that its
overall number of steps is (|Text|� k + 1) · (|Text|� k + 1) · k. To simplify the matter,
computer scientists often say that the runtime of FREQUENTWORDS has an upper
bound of |Text|2 · k steps and refer to the complexity of this algorithm as O�|Text|2 · k

�

(see DETOUR: Big-O Notation). PAGE 52

CHARGING STATION (The Frequency Array): If |Text| and k are small, as
is the case when looking for DnaA boxes in the typical bacterial oriC, then an
algorithm with running time of O�|Text|2 · k

�
is perfectly acceptable. But once

we find some new biological application requiring us to solve the Frequent
Words Problem for a very long Text, we will quickly run into trouble. Check
out this Charging Station to learn about solving the Frequent Words Problem
using a frequency array, a data structure that will also help us solve new coding
challenges later in the chapter.

PAGE
39
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Frequent words in Vibrio cholerae

Figure 1.3 reveals the most frequent k-mers in the oriC region from Vibrio cholerae.

k 3 4 5 6 7 8 9
count 25 12 8 8 5 4 3
k-mers tga atga gatca tgatca atgatca atgatcaa atgatcaag

tgatc cttgatcat
tcttgatca
ctcttgatc

FIGURE 1.3 The most frequent k-mers in the oriC region of Vibrio cholerae for k from
3 to 9, along with the number of times that each k-mer occurs.

STOP and Think: Do any of the counts in Figure 1.3 seem surprisingly large?

For example, the 9-mer ATGATCAAG appears three times in the oriC region of Vibrio
cholerae — is it surprising?

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctcttgatcatcgtttc

We highlight a most frequent 9-mer instead of using some other value of k because
experiments have revealed that bacterial DnaA boxes are usually nine nucleotides long.
The probability that there exists a 9-mer appearing three or more times in a randomly
generated DNA string of length 500 is approximately 1/1300 (see DETOUR: Probabili- PAGE 52
ties of Patterns in a String). In fact, there are four different 9-mers repeated three or
more times in this region: ATGATCAAG, CTTGATCAT, TCTTGATCA, and CTCTTGATC.

The low likelihood of witnessing even one repeated 9-mer in the oriC region of Vibrio
cholerae leads us to the working hypothesis that one of these four 9-mers may represent
a potential DnaA box that, when appearing multiple times in a short region, jump-starts
replication. But which one?

10
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STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio
cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11
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Reverse Complement Problem:
Find the reverse complement of a DNA string.

Input: A DNA string Pattern.
Output: Pattern, the reverse complement of Pattern.

1C

STOP and Think: Look again at the four most frequent 9-mers in the oriC region
of Vibrio cholerae from Figure 1.3. Now do you notice anything surprising?

Interestingly, among the four most frequent 9-mers in the oriC region of Vibrio cholerae,
ATGATCAAG and CTTGATCAT are reverse complements of each other, resulting in the
following six occurrences of these strings.

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCATgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

Finding a 9-mer that appears six times (either as itself or as its reverse complement) in
a DNA string of length 500 is far more surprising than finding a 9-mer that appears three
times (as itself). This observation leads us to the working hypothesis that ATGATCAAG
and its reverse complement CTTGATCAT indeed represent DnaA boxes in Vibrio cholerae.
This computational conclusion makes sense biologically because the DnaA protein that
binds to DnaA boxes and initiates replication does not care which of the two strands it
binds to. Thus, for our purposes, both ATGATCAAG and CTTGATCAT represent DnaA
boxes.

However, before concluding that we have found the DnaA box of Vibrio cholerae,
the careful bioinformatician should check if there are other short regions in the Vibrio
cholerae genome exhibiting multiple occurrences of ATGATCAAG (or CTTGATCAT). Af-
ter all, maybe these strings occur as repeats throughout the entire Vibrio cholerae genome,
rather than just in the oriC region. To this end, we need to solve the following problem.

12
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Pattern Matching Problem:
Find all occurrences of a pattern in a string.

Input: Strings Pattern and Genome.
Output: All starting positions in Genome where Pattern appears as a sub-
string.

1D

After solving the Pattern Matching Problem, we discover that ATGATCAAG appears 17
times in the following positions of the Vibrio cholerae genome:

116556, 149355, 151913, 152013, 152394, 186189, 194276, 200076, 224527,
307692, 479770, 610980, 653338, 679985, 768828, 878903, 985368

With the exception of the three occurrences of ATGATCAAG in oriC at starting positions
151913, 152013, and 152394, no other instances of ATGATCAAG form clumps, i.e., ap-
pear close to each other in a small region of the genome. You may check that the same
conclusion is reached when searching for CTTGATCAT. We now have strong statistical
evidence that ATGATCAAG/CTTGATCAT may represent the hidden message to DnaA
to start replication.

STOP and Think: Can we conclude that ATGATCAAG/CTTGATCAT also repre-
sents a DnaA box in other bacterial genomes?

An Explosion of Hidden Messages

Looking for hidden messages in multiple genomes

We should not jump to the conclusion that ATGATCAAG/CTTGATCAT is a hidden
message for all bacterial genomes without first checking whether it even appears
in known oriC regions from other bacteria. After all, maybe the clumping effect of
ATGATCAAG/CTTGATCAT in the oriC region of Vibrio cholerae is simply a statistical
fluke that has nothing to do with replication. Or maybe different bacteria have different
DnaA boxes . . .

Let’s check the proposed oriC region of Thermotoga petrophila, a bacterium that thrives
in extremely hot environments; its name derives from its discovery in the water beneath
oil reservoirs, where temperatures can exceed 80� Celsius.

13

http://rosalind.info/problems/1d


W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactga
aactaaaatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaa
ttacataccgtatattgtattaaattgacgaacaattgcatggaattgaatatatgcaaa
acaaacctaccaccaaactctgtattgaccattttaggacaacttcagggtggtaggttt
ctgaagctctcatcaatagactattttagtctttacaaacaatattaccgttcagattca
agattctacaacgctgttttaatgggcgttgcagaaaacttaccacctaaaatccagtat
ccaagccgatttcagagaaacctaccacttacctaccacttacctaccacccgggtggta
agttgcagacattattaaaaacctcatcagaagcttgttcaaaaatttcaatactcgaaa
cctaccacctgcgtcccctattatttactactactaataatagcagtataattgatctga

This region does not contain a single occurrence of ATGATCAAG or CTTGATCAT ! Thus,
different bacteria may use different DnaA boxes as “hidden messages” to the DnaA
protein.

Application of the Frequent Words Problem to the oriC region above reveals that the
following six 9-mers appear in this region three or more times:

AACCTACCA AAACCTACC ACCTACCAC

CCTACCACC GGTAGGTTT TGGTAGGTT

Something peculiar must be happening because it is extremely unlikely that six different
9-mers will occur so frequently within the same short region in a random string. We
will cheat a little and consult with Ori-Finder, a software tool for finding replication
origins in DNA sequences. This software chooses CCTACCACC (along with its reverse
complement GGTGGTAGG) as a working hypothesis for the DnaA box in Thermotoga
petrophila. Together, these two complementary 9-mers appear five times in the replica-
tion origin:

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactga
aactaaaatggtaggtttGGTGGTAGGttttgtgtacattttgtagtatctgatttttaa
ttacataccgtatattgtattaaattgacgaacaattgcatggaattgaatatatgcaaa
acaaaCCTACCACCaaactctgtattgaccattttaggacaacttcagGGTGGTAGGttt
ctgaagctctcatcaatagactattttagtctttacaaacaatattaccgttcagattca
agattctacaacgctgttttaatgggcgttgcagaaaacttaccacctaaaatccagtat
ccaagccgatttcagagaaacctaccacttacctaccacttaCCTACCACCcgggtggta
agttgcagacattattaaaaacctcatcagaagcttgttcaaaaatttcaatactcgaaa
CCTACCACCtgcgtcccctattatttactactactaataatagcagtataattgatctga

The Clump Finding Problem

Now imagine that you are trying to find oriC in a newly sequenced bacterial genome.
Searching for “clumps” of ATGATCAAG/CTTGATCAT or CCTACCACC/GGTGGTAGG is
unlikely to help, since this new genome may use a completely different hidden message!
Before we lose all hope, let’s change our computational focus: instead of finding clumps
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of a specific k-mer, let’s try to find every k-mer that forms a clump in the genome.
Hopefully, the locations of these clumps will shed light on the location of oriC.

Our plan is to slide a window of fixed length L along the genome, looking for a
region where a k-mer appears several times in short succession. The parameter value
L = 500 reflects the typical length of oriC in bacterial genomes.

We defined a k-mer as a “clump” if it appears many times within a short interval of
the genome. More formally, given integers L and t, a k-mer Pattern forms an (L, t)-clump
inside a (longer) string Genome if there is an interval of Genome of length L in which this
k-mer appears at least t times. (This definition assumes that the k-mer completely fits
within the interval.) For example, TGCA forms a (25, 3)-clump in the following Genome:

gatcagcataagggtccCTGCAATGCATGACAAGCCTGCAGTtgttttac

From our previous examples of oriC regions, ATGATCAAG forms a (500, 3)-clump in
the Vibrio cholerae genome, and CCTACCACC forms a (500, 3)-clump in the Thermotoga
petrophila genome. We are now ready to formulate the following problem.

Clump Finding Problem:
Find patterns forming clumps in a string.

Input: A string Genome, and integers k, L, and t.
Output: All distinct k-mers forming (L, t)-clumps in Genome.

1E

CHARGING STATION (Solving the Clump Finding Problem): You can solve
the Clump Finding Problem by simply applying your algorithm for the Frequent
Words Problem to each window of length L in Genome. However, if your algorithm
for the Frequent Words Problem is not very efficient, then such an approach may
be impractical. For example, recall that FREQUENTWORDS has O�

L2 · k
�

running
time. Applying this algorithm to each window of length L in Genome will result
in an algorithm with O�

L2 · k · |Genome|� running time. Moreover, even if we
use a faster algorithm for the Frequent Words Problem (like the one described
when we introduce a frequency array on page 39), the running time remains high
when we try to analyze a bacterial — let alone human — genome. Check out this
Charging Station to learn about a more efficient approach for solving the Clump
Finding Problem.

PAGE
44
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Let’s look for clumps in the Escherichia coli (E. coli) genome, the workhorse of bacterial
genomics. We find hundreds of different 9-mers forming (500, 3)-clumps in the E. coli
genome, and it is absolutely unclear which of these 9-mers might represent a DnaA box
in the bacterium’s oriC region.

STOP and Think: Should we give up? If not, what would you do now?

At this point, an unseasoned researcher might give up, since it appears that we do not
have enough information to locate oriC in E. coli. But a fearless veteran bioinformatician
would try to learn more about the details of replication in the hope that they provide
new algorithmic insights into finding oriC.

The Simplest Way to Replicate DNA

We are now ready to discuss the replication process in more detail. As illustrated in
Figure 1.5 (top), the two complementary DNA strands running in opposite directions
around a circular chromosome unravel, starting at oriC. As the strands unwind, they
create two replication forks, which expand in both directions around the chromosome
until the strands completely separate at the replication terminus (denoted terC). The
replication terminus is located roughly opposite to oriC in the chromosome.

An important thing to know about replication is that a DNA polymerase does not
wait for the two parent strands to completely separate before initiating replication;
instead, it starts copying while the strands are unraveling. Thus, just four DNA poly-
merases, each responsible for one half-strand, can all start at oriC and replicate the
entire chromosome. To start replication, a DNA polymerase needs a primer, a short
complementary segment (shown in red in Figure 1.5) that binds to the parent strand
and jump starts the DNA polymerase. After the strands start separating, each of the
four DNA polymerases starts replication by adding nucleotides, beginning with the
primer and proceeding around the chromosome from oriC to terC in either the clockwise
or counterclockwise direction. When all four DNA polymerases have reached terC, the
chromosome’s DNA will have been completely replicated, resulting in two pairs of
complementary strands (Figure 1.5 (bottom)), and the cell is ready to divide.

Yet while you were reading the description above, biology professors were writing a
petition to have us fired and sent back to Biology 101. And they would be right, because
our exposition suffers from a major flaw; we only described the replication process in
this way so that you can better appreciate what we are about to reveal.
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oriC 

oriC 

terC 

terC 

3’ 5’ 

3’ 5’ 

FIGURE 1.5 (Top) Four imaginary DNA polymerases at work replicating a chromosome
as the replication forks extend from oriC to terC. The blue strand is directed clockwise,
and the green strand is directed counterclockwise. (Bottom) Replication is complete.

The problem with our current description is that it assumes that DNA polymerases
can copy DNA in either direction along a strand of DNA (i.e., both 50 ! 30 and 30 ! 50).
However, nature has not yet equipped DNA polymerases with this ability, as they are
unidirectional, meaning that they can only traverse a template strand of DNA in the
30 ! 50 direction. Notice that this is opposite from the 50 ! 30 direction of DNA.
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STOP and Think: If you were a unidirectional DNA polymerase, how would
you replicate DNA? How many DNA polymerases would be needed to complete
this task?

The unidirectionality of DNA polymerase requires a major revision to our naive model
of replication. Imagine that you decided to walk along DNA from oriC to terC. There
are four different half-strands of parent DNA connecting oriC to terC, as highlighted
in Figure 1.6. Two of these half-strands are traversed from oriC to terC in the 50 ! 30

direction and are thus called forward half-strands (represented by thin blue and green
lines in Figure 1.6). The other two half-strands are traversed from oriC to terC in the
30 ! 50 direction and are thus called reverse half-strands (represented by thick blue
and green lines in Figure 1.6).

3’ 5’ 
oriC 

terC 

oriC 

terC 

3’ 5’ 

Reverse
half-strand 

Forward
half-strand 

Forward
half-strand 

Reverse
half-strand 

FIGURE 1.6 Complementary DNA strands with forward and reverse half-strands shown
as thin and thick lines, respectively.

Asymmetry of Replication

While biologists will feel at home with the following description of DNA replication,
computer scientists may find it overloaded with new terms. If it seems too biologically
complex, then feel free to skim this section, as long as you believe us that the replication
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process is asymmetric, i.e., that forward and reverse half-strands have very different
fates with respect to replication.

Since a DNA polymerase can only move in the reverse (30 ! 50) direction, it can
copy nucleotides non-stop from oriC to terC along reverse half-strands. However, repli-
cation on forward half-strands is very different because a DNA polymerase cannot
move in the forward (50 ! 30) direction; on these half-strands, a DNA polymerase must
replicate backwards toward oriC. Take a look at Figure 1.7 to see why this must be the case.

3’ 5’ 

3’ 5’ 

FIGURE 1.7 Replication begins at oriC (primers shown in red) with the synthesis of
fragments on the reverse half-strands (shown by thick lines). A DNA polymerase must
wait until the replication fork has opened some (small) distance before it starts copying
the forward half-strands (shown by thin lines) back toward oriC.

On a forward half-strand, in order to replicate DNA, a DNA polymerase must wait
for the replication fork to open a little (approximately 2,000 nucleotides) until a new
primer is formed at the end of the replication fork; afterwards, the DNA polymerase
starts replicating a small chunk of DNA starting from this primer and moving backward
in the direction of oriC. When the two DNA polymerases on forward half-strands reach
oriC, we have the situation shown in Figure 1.8. Note the contrast between this figure
and Figure 1.5.

After this point, replication on each reverse half-strand progresses continuously;
however, a DNA polymerase on a forward half-strand has no choice but to wait again
until the replication fork has opened another 2,000 nucleotides or so. It then requires a
new primer to begin synthesizing another fragment back toward oriC. On the whole,
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3’ 5’ 

3’ 5’ 

FIGURE 1.8 The daughter fragments are now synthesized (with some delay) on the
forward half-strands (shown by thin lines).

replication on a forward half-strand requires occasional stopping and restarting, which
results in the synthesis of short Okazaki fragments that are complementary to intervals
on the forward half-strand. You can see these fragments forming in Figure 1.9 (top).

When the replication fork reaches terC, the replication process is almost complete,
but gaps still remain between the disconnected Okazaki fragments (Figure 1.9 (middle)).

Finally, consecutive Okazaki fragments are sewn together by an enzyme called DNA
ligase, resulting in two intact daughter chromosomes, each consisting of one parent
strand and one newly synthesized daughter strand, as shown in Figure 1.9 (bottom).
In reality, DNA ligase does not wait until after all the Okazaki fragments have been
replicated to start sewing them together.

Biologists call a reverse half-strand a leading half-strand since a single DNA poly-
merase traverses this half-strand non-stop, and they call a forward half-strand a lagging
half-strand since it is used as a template by many DNA polymerases stopping and
starting replication. If you are confused about the differences between the leading and
lagging half-strands, you are not alone — we and legions of biology students are also
confused. The confusion is exacerbated by the fact that different textbooks use different
terminology depending on whether the authors intend to refer to a leading template
half-strand or a leading half-strand that is being synthesized from a (lagging) template
half-strand. You hopefully see why we have chosen the terms “reverse” and “forward”
half-strands in an attempt to mitigate some of this confusion.
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3’ 5’ 

3’ 5’ 

Okazaki fragments 

FIGURE 1.9 (Top) The replication fork continues growing. Only one primer is needed
for each of the reverse half-strands (shown by thick lines), while the forward half-strands
(shown by thin lines) require multiple primers in order to synthesize Okazaki fragments.
Two of these primers are shown in red on each forward half-strand. (Middle) Replication
is nearly complete, as all daughter DNA is synthesized. However, half of each daughter
chromosome contains disconnected Okazaki fragments. (Bottom) Okazaki fragments
have been sewn together, resulting in two intact daughter chromosomes.
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Peculiar Statistics of the Forward and Reverse Half-Strands

Deamination

In the last section, we saw that as the replication fork expands, DNA polymerase syn-
thesizes DNA quickly on the reverse half-strand but suffers delays on the forward
half-strand. We will explore the asymmetry of DNA replication to design a new algo-
rithm for finding oriC.

How in the world can the asymmetry of replication possibly help us locate oriC?
Notice that since the replication of a reverse half-strand proceeds quickly, it lives double-
stranded for most of its life. Conversely, a forward half-strand spends a much larger
amount of its life single-stranded, waiting to be used as a template for replication.
This discrepancy between the forward and reverse half-strands is important because
single-stranded DNA has a much higher mutation rate than double-stranded DNA. In
particular, if one of the four nucleotides in single-stranded DNA has a greater tendency
than other nucleotides to mutate in single-stranded DNA, then we should observe a
shortage of this nucleotide on the forward half-strand.

Following up on this thought, let’s compare the nucleotide counts of the reverse
and forward half-strands. If these counts differ substantially, then we will design an
algorithm that attempts to track down these differences in genomes for which oriC is
unknown. The nucleotide counts for Thermotoga petrophila are shown in Figure 1.10.

#C #G #A #T
Entire strand 427419 413241 491488 491363

Reverse half-strand 219518 201634 243963 246641
Forward half-strand 207901 211607 247525 244722

Difference +11617 -9973 -3562 +1919

FIGURE 1.10 Counting nucleotides in the Thermotoga petrophila genome on the for-
ward and reverse half-strands.

STOP and Think: Do you notice anything interesting about the nucleotide counts
in Figure 1.10?

Although the frequencies of A and T are practically identical on the two half-strands, C
is more frequent on the reverse half-strand than on the forward half-strand, resulting
in a difference of 219518� 207901 = +11617. Its complementary nucleotide G is less
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frequent on the reverse half-strand than on the forward half-strand, resulting in a
difference of 201634� 211607 = �9973.

It turns out that we observe these discrepancies because cytosine (C) has a tendency
to mutate into thymine (T) through a process called deamination. Deamination rates
rise 100-fold when DNA is single-stranded, which leads to a decrease in cytosine on
the forward half-strand, thus forming mismatched base pairs T-G. These mismatched
pairs can further mutate into T-A pairs when the bond is repaired in the next round
of replication, which accounts for the observed decrease in guanine (G) on the reverse
half-strand (recall that a forward parent half-strand synthesizes a reverse daughter
half-strand, and vice-versa).

STOP and Think: If deamination changes cytosine to thymine, why do you think
that the forward half-strand still has some cytosine?

The skew diagram

Let’s see if we can take advantage of these peculiar statistics caused by deamina-
tion to locate oriC. As Figure 1.10 illustrates, the difference between the total amount
of guanine and the total amount of cytosine is negative on the reverse half-strand
(211607� 207901 = 3706) and positive on the forward half-strand (201634� 219518 =

�17884). Thus, our idea is to traverse the genome, keeping a running total of the
difference between the counts of G and C. If this difference starts increasing, then we
guess that we are on the forward half-strand; on the other hand, if this difference starts
decreasing, then we guess that we are on the reverse half-strand. See Figure 1.11.

STOP and Think: Imagine that you are reading through the genome (in the
50 ! 30 direction) and notice that the difference between the guanine and cytosine
counts just switched its behavior from decreasing to increasing. Where in the
genome are you?

Since we don’t know the location of oriC in a circular genome, let’s linearize it (i.e., select
an arbitrary position and pretend that the genome begins here), resulting in a linear
string Genome. We define SKEWi(Genome) as the difference between the total number
of occurrences of G and the total number of occurrences of C in the first i nucleotides
of Genome. The skew diagram is defined by plotting SKEWi(Genome) as i ranges from
0 to |Genome|, where SKEW0(Genome) is set equal to zero. Figure 1.12 shows a skew
diagram for a short DNA string.
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#G – #C
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#G – #C
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FIGURE 1.11 Because of deamination, each forward half-strand has a shortage of
cytosine compared to guanine, and each reverse half-strand has a shortage of guanine
compared to cytosine. The dashed blue line illustrates an imaginary walk along the
outer strand of the genome counting the difference between the counts of G and C. We
assume that the difference between these counts is positive on the forward half-strand
and negative on the reverse half-strand.

Note that we can compute SKEWi+1(Genome) from SKEWi(Genome) according to the
nucleotide in position i of Genome. If this nucleotide is G, then SKEWi+1(Genome) =

SKEWi(Genome)+ 1; if this nucleotide is C, then SKEWi+1(Genome) = SKEWi(Genome)�
1; otherwise, SKEWi+1(Genome) = SKEWi(Genome).

C A T G G G C A T C G G C C A T A C G C C
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FIGURE 1.12 The skew diagram for Genome = CATGGGCATCGGCCATACGCC.

Figure 1.13 depicts the skew diagram for a linearized E. coli genome. Notice the
very clear pattern! It turns out that the skew diagram for many bacterial genomes has a
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similar characteristic shape.

STOP and Think: After looking at the skew diagram in Figure 1.13, where do
you think that oriC is located in E. coli?

position 
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FIGURE 1.13 The skew diagram for E. coli achieves a maximum and minimum at
positions 1550413 and 3923620, respectively.

Let’s follow the 50 ! 30 direction of DNA and walk along the chromosome from
terC to oriC (along a reverse half-strand), then continue on from oriC to terC (along
a forward half-strand). In Figure 1.11, we saw that the skew is decreasing along the
reverse half-strand and increasing along the forward half-strand. Thus, the skew should
achieve a minimum at the position where the reverse half-strand ends and the forward
half-strand begins, which is exactly the location of oriC! We have just developed an
algorithm for locating oriC: it should be found where the skew attains a minimum.

Minimum Skew Problem:
Find a position in a genome where the skew diagram attains a minimum.

Input: A DNA string Genome.
Output: All integer(s) i minimizing SKEWi(Genome) among all values of i
(from 0 to |Genome|).

1F
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STOP and Think: Note that the skew diagram changes depending on where we
start our walk along the circular chromosome. Do you think that the minimum of
the skew diagram points to the same position in the genome regardless of where
we begin walking to generate the skew diagram?

Some Hidden Messages Are More Elusive Than Others

Solving the Minimum Skew Problem now provides us with an approximate location of
oriC at position 3923620 in E. coli. In an attempt to confirm this hypothesis, let’s look
for a hidden message representing a potential DnaA box near this location. Solving the
Frequent Words Problem in a window of length 500 starting at position 3923620 (shown
below) reveals no 9-mers (along with their reverse complements) that appear three or
more times! Even if we have located oriC in E. coli, it appears that we still have not
found the DnaA boxes that jump-start replication in this bacterium . . .

aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggt
atgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaaga
cctgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgat
ctcttattaggatcgcactgccctgtggataacaaggatccggcttttaagatcaacaac
ctggaaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcag
aatgaggggttatacacaactcaaaaactgaacaacagttgttctttggataactaccgg
ttgatccaagcttcctgacagagttatccacagtagatcgcacgatctgtatacttattt
gagtaaattaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatc
aagaatgttgatcttcagtg

STOP and Think: What would you do next?

Before we give up, let’s examine the oriC of Vibrio cholerae one more time to see if it
provides us with any insights on how to alter our algorithm to find DnaA boxes in E.
coli. You may have noticed that in addition to the three occurrences of ATGATCAAG
and three occurrences of its reverse complement CTTGATCAT, the Vibrio cholerae oriC
contains additional occurrences of ATGATCAAC and CATGATCAT, which differ from
ATGATCAAG and CTTGATCAT in only a single nucleotide:
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atcaATGATCAACgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagCATGATCATggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCATgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

Finding eight approximate occurrences of our target 9-mer and its reverse comple-
ment in a short region is even more statistically surprising than finding the six exact
occurrences of ATGATCAAG and its reverse complement CTTGATCAT that we stumbled
upon in the beginning of our investigation. Furthermore, the discovery of these approx-
imate 9-mers makes sense biologically, since DnaA can bind not only to “perfect” DnaA
boxes but to their slight variations as well.

We say that position i in k-mers p1 · · · pk and q1 · · · qk is a mismatch if pi 6= qi. The
number of mismatches between strings p and q is called the Hamming distance be-
tween these strings and is denoted HAMMINGDISTANCE(p, q).

Hamming Distance Problem:
Compute the Hamming distance between two strings.

Input: Two strings of equal length.
Output: The Hamming distance between these strings.

1G

We say that a k-mer Pattern appears as a substring of Text with at most d mismatches
if there is some k-mer substring Pattern’ of Text having d or fewer mismatches with
Pattern, i.e., HAMMINGDISTANCE(Pattern, Pattern0)  d. Our observation that a DnaA
box may appear with slight variations leads to the following generalization of the
Pattern Matching Problem.

Approximate Pattern Matching Problem:
Find all approximate occurrences of a pattern in a string.

Input: Strings Pattern and Text along with an integer d.
Output: All starting positions where Pattern appears as a substring of Text
with at most d mismatches.

1H
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Our goal now is to modify our previous algorithm for the Frequent Words Problem in
order to find DnaA boxes by identifying frequent k-mers, possibly with mismatches.
Given strings Text and Pattern as well as an integer d, we define COUNTd(Text, Pattern)
as the number of occurrences of Pattern in Text with at most d mismatches. For example,

COUNT1(AACAAGCATAAACATTAAAGAG, AAAAA) = 4

because AAAAA appears four times in this string with at most one mismatch: AACAA,
ATAAA, AAACA, and AAAGA. Notice that two of these occurrences overlap.

EXERCISE BREAK: Compute COUNT2(AACAAGCATAAACATTAAAGAG, AAAAA).

Computing COUNTd(Text, Pattern) simply requires us to compute the Hamming dis-
tance between Pattern and every k-mer substring of Text, as follows.

APPROXIMATEPATTERNCOUNT(Text, Pattern, d)
count 0
for i 0 to |Text|� |Pattern|

Pattern’ Text(i, |Pattern|)
if HAMMINGDISTANCE(Pattern, Pattern’)  d

count count + 1
return count

EXERCISE BREAK: Implement APPROXIMATEPATTERNCOUNT. What is its
running time?

A most frequent k-mer with up to d mismatches in Text is simply a string Pattern max-
imizing COUNTd(Text, Pattern) among all k-mers. Note that Pattern does not need to
actually appear as a substring of Text; for example, as we saw above, AAAAA is the most
frequent 5-mer with 1 mismatch in AACAAGCATAAACATTAAAGAG, even though it does
not appear exactly in this string. Keep this in mind while solving the following problem.

Frequent Words with Mismatches Problem:
Find the most frequent k-mers with mismatches in a string.

Input: A string Text as well as integers k and d.
Output: All most frequent k-mers with up to d mismatches in Text.

1I
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CHARGING STATION (Solving the Frequent Words with Mismatches Prob-
lem): One way to solve the above problem is to generate all 4k k-mers Pattern,
compute APPROXIMATEPATTERNCOUNT(Text, Pattern, d) for each k-mer Pattern,
and then output k-mers with the maximum number of approximate occurrences.
This is an inefficient approach in practice, since many of the 4k k-mers that this
method analyzes should not be considered because neither they nor their mu-
tated versions (with up to d mismatches) appear in Text. Check out this Charging
Station to learn about a better approach that avoids analyzing such hopeless
k-mers.

PAGE
47

We now redefine the Frequent Words Problem to account for both mismatches and
reverse complements. Recall that Pattern refers to the reverse complement of Pattern.

Frequent Words with Mismatches and Reverse Complements Problem:
Find the most frequent k-mers (with mismatches and reverse complements) in a string.

Input: A DNA string Text as well as integers k and d.
Output: All k-mers Pattern that maximize the sum COUNTd(Text, Pattern) +
COUNTd(Text, Pattern) over all possible k-mers.

1J

A Final Attempt at Finding DnaA Boxes in E. coli

We now make a final attempt to find DnaA boxes in E. coli by finding the most frequent
9-mers with mismatches and reverse complements in the region suggested by the
minimum skew as oriC. Although the minimum of the skew diagram for E. coli is found
at position 3923620, we should not assume that its oriC is found exactly at this position
due to random fluctuations in the skew. To remedy this issue, we could choose a larger
window size (e.g., L = 1000), but expanding the window introduces the risk that we
may bring in other clumped 9-mers that do not represent DnaA boxes but appear in this
window more often than the true DnaA box. It makes more sense to try a small window
either starting, ending, or centered at the position of minimum skew.

Let’s cross our fingers and identify the most frequent 9-mers (with 1 mismatch and re-
verse complements) within a window of length 500 starting at position 3923620 of the E.
coli genome. Bingo! The experimentally confirmed DnaA box in E. coli (TTATCCACA) is a
most frequent 9-mer with 1 mismatch, along with its reverse complement TGTGGATAA:
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aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggt
atgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaaga
cctgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgat
ctcttattaggatcgcactgcccTGTGGATAAcaaggatccggcttttaagatcaacaac
ctggaaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcag
aatgaggggTTATACACAactcaaaaactgaacaacagttgttcTTTGGATAActaccgg
ttgatccaagcttcctgacagagTTATCCACAgtagatcgcacgatctgtatacttattt
gagtaaattaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatc
aagaatgttgatcttcagtg

You will notice that we highlighted an interior interval of this sequence with darker text.
This region is the experimentally verified oriC of E. coli, which starts 37 nucleotides after
position 3923620, where the skew reaches its minimum value.

We were very fortunate that the DnaA boxes of E. coli are captured in the window
that we chose. Moreover, while TTATCCACA represents a most frequent 9-mer with 1
mismatch and reverse complements in this 500-nucleotide window, it is not the only one:
GGATCCTGG, GATCCCAGC, GTTATCCAC, AGCTGGGAT, and CTGGGATCA also appear
four times with 1 mismatch and reverse complements.

STOP and Think: In this chapter, every time we find oriC, we seem to find some
other surprisingly frequent 9-mers. Why do you think this is?

We do not know what purpose — if any — these other 9-mers serve in the E. coli genome,
but we do know that there are many different types of hidden messages in genomes; these
hidden messages have a tendency to cluster within a genome, and most of them have
nothing to do with replication. One example is the regulatory DNA motifs responsible
for gene expression that we will study in Chapter 2. The important lesson is that existing
approaches to oriC prediction remain imperfect and sometimes inconclusive. However,
even providing biologists with a small collection of 9-mers as candidate DnaA boxes is
a great aid as long as one of these 9-mers is correct.

Thus, the moral of this chapter is that even though computational predictions can
be powerful, bioinformaticians should collaborate with biologists to verify their compu-
tational predictions. Or improve these predictions: the next question hints at how oriC
predictions can be carried out using comparative genomics, a bioinformatics approach
that uses evolutionary similarities to answer difficult questions about genomes.

STOP and Think: Salmonella enterica is a close relative of E. coli that causes
typhoid fever and foodborne illness. After having learned what DnaA boxes look
like in E. coli, how would you look for DnaA boxes in Salmonella enterica?
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You will have an opportunity to look for DnaA boxes in Salmonella enterica in the epi-
logue, which will feature a “Challenge Problem” asking you to apply what you have
learned to a real dataset. Some chapters also have an “Open Problems” section outlining
unanswered research questions.

Epilogue: Complications in oriC Predictions

In this chapter, we have considered three genomes and found three different hypoth-
esized 9-mers encoding DnaA boxes: ATGATCAAG in Vibrio cholerae, CCTACCACC in
Thermotoga petrophila, and TTATCCACA in E. coli. We must warn you that finding oriC
is often more complex than in the three examples we considered. Some bacteria have
even fewer DnaA boxes than E. coli, making it difficult to identify them. The terC region
is often located not directly opposite to oriC but may be significantly shifted, resulting
in reverse and forward half-strands having substantially different lengths. The position
of the skew minimum is often only a rough indicator of oriC position, which forces
researchers to expand their windows when searching for DnaA boxes, bringing in extra-
neous repeated substrings. Finally, skew diagrams do not always look as nice as that
of E. coli; for example, the skew diagram for Thermotoga petrophila is shown in Figure 1.14.
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FIGURE 1.14 The skew diagram for Thermotoga petrophila achieves a minimum at
position 787199 but does not have the same nice shape as the skew diagram for E. coli.

STOP and Think: What evolutionary process could possibly explain the shape
of the skew diagram for Thermotoga petrophila?
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Since the skew diagram for Thermotoga petrophila is complex and the oriC for this genome
has not even been experimentally verified, there is a chance that the region predicted
by Ori-Finder as the oriC region for Thermotoga petrophila (or even for Vibrio cholerae) is
actually incorrect!

You now should have a good sense of how to locate oriC and DnaA boxes compu-
tationally. We will take the training wheels off and ask you to solve a challenge problem.

CHALLENGE PROBLEM: Find DnaA boxes in Salmonella enterica.
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Open Problems

Multiple replication origins in a bacterial genome

Biologists long believed that each bacterial chromosome has only one oriC. Wang et al.,
2011 genetically modified E. coli by inserting a synthetic oriC a million nucleotides away
from the bacterium’s known oriC. To their surprise, E. coli continued business as usual,
starting replication at both locations!

Following the publication of this paper, the search for naturally occurring bacteria
with multiple oriCs immediately started. In 2012, Xia raised doubts about the “single
oriC” postulate and gave examples of bacteria with highly unusual skews. In fact,
having more than one oriC makes sense in the light of evolution: if the genome is long
and replication is slow, then multiple replication origins would decrease the amount of
time that the bacterium must spend replicating its DNA.

For example, Wigglesworthia glossinidia, a symbiotic bacterium living in the intestines
of tsetse flies, has the atypical skew diagram shown in Figure 1.15. Since this diagram
has at least two pronounced local minima, Xia argued that this bacterium may have
two or more oriC regions.

We should be careful with Xia’s hypothesis that this bacterium has two oriCs, as
there may be alternative explanations for multiple local minima in the skew. For
example, genome rearrangements (which we will study in ??) move genes within a
genome and often reposition them from the forward to the reverse half-strand and
vice-versa, thus resulting in irregularities in the skew diagram. One example of a
genome rearrangement is a reversal, which flips around a segment of chromosome and
switches it to the opposite strand; Figure 1.16 shows what happens to the skew diagram
after a reversal.

Another difficulty is presented by the fact that different species of bacteria may
exchange genetic material in horizontal gene transfer. If a gene from the forward
half-strand of one bacterium is transferred to the reverse half-strand of another (or
vice-versa), then we will observe an irregularity in the skew diagram. As a result, the
question about the number of oriCs of Wigglesworthia glossinidia remains unresolved.

However, if you could demonstrate that there exist two sets of identical DnaA boxes
in the vicinity of two local minima in the skew diagram of Wigglesworthia glossinidia,
then you would have the first solid evidence in favor of multiple bacterial oriCs. Maybe
simply applying your solution for the Frequent Words with Mismatches and Reverse
Complements Problem will reveal these DnaA boxes. Can you find other bacterial
genomes where a single oriC is in doubt and check whether they indeed have multiple
oriCs?
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FIGURE 1.15 The skew diagram for Wigglesworthia glossinidia.
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FIGURE 1.16 (Left) An “ideal” V-shaped skew diagram that achieves minimum skew at
oriC. The skew diagram decreases along the reverse half-strand (shown by a thick line)
and increases along the forward half-strand (shown by a thin line). We assume that a
circular chromosome was cut at terC, resulting in a linear chromosome that starts and
ends at terC. (Right) A skew diagram after a reversal that switches segments between the
reverse and forward strands and alters the skew diagram. As before, the skew diagram
still decreases along the segments of the genome shown by thick lines and increases
along the segments shown by thin lines.
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Finding replication origins in archaea

Archaea are unicellular organisms so distinct from other life forms that biologists have
placed them into their own domain of life separate from bacteria and eukaryotes. Al-
though archaea are visually similar to bacteria, they have some genomic features that are
more closely related to eukaryotes. In particular, the replication machinery of archaea
is more similar to eukaryotes than bacteria. Yet archaea use a much greater variety of
energy sources than eukaryotes, feeding on ammonia, metals, or even hydrogen gas.

Figure 1.17 shows the skew diagram of Sulfolobus solfataricus, a species of archaea
growing in acidic volcanic springs in temperatures over 80� C. In its skew diagram, you
can see at least three local minima, represented by deep valleys, in addition to many
more shallow valleys.
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FIGURE 1.17 The skew diagram of Sulfolobus solfataricus.

Lundgren et al., 2004 demonstrated experimentally that Sulfolobus solfataricus indeed
has three oriCs. Since then, multiple oriCs have been identified in many other archaea.
However, no accurate computational approach has been developed to identify multiple
oriCs in a newly sequenced archaea genome. For example, the methane-producing
archaea Methanococcus jannaschii is considered the workhorse of archaea genomics, but
its oriC(s) still remain unidentified! Its skew diagram (shown in Figure 1.18) suggests
that it may have multiple oriCs: can you find them?
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FIGURE 1.18 The skew diagram for Methanococcus jannaschii.

Finding replication origins in yeast

If you think that finding replication origins in bacteria is a complex problem, wait
until you analyze replication origins in more complex organisms like yeast or humans,
which have hundreds of replication origins. Among various yeast species, the budding
yeast Saccharomyces cerevisiae has the best characterized replication origins. It has
approximately 400 different oriCs, many of which may be used during the replication of
any single yeast cell.

Having a large number of oriCs results in dozens of replication forks hurtling
towards each other from different locations in the genome in ways that are not yet
completely understood. However, researchers have discovered that the replication
origins of S. cerevisiae share a (somewhat variable) pattern called the ARS Consensus
Sequence (ACS). The ACS is the binding site for the so-called Origin Recognition
Complex, which initiates the loading of additional proteins required for origin firing.
Many ACSs correspond to the following canonical thymine-rich pattern of length 11.

TTTAT(G/A)TTT(T/A)(G/T)

Here, the notation (X/Y) indicates that either nucleotide X or nucleotide Y may appear
in that position.

However, various ACSs may differ from this canonical pattern, with lengths varying
from 11 to 17 nucleotides. For example, the 11-nucleotide long pattern shown above is
often part of a 17-nucleotide pattern:
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(T/A)(T/A)(T/A)(T/A)TTTAT(G/A)TTT(T/A)(G/T)(T/G)(T/C)

Recently, some progress has been made in characterizing the ACS in a few other
yeast species. In some species like S. bayanus, the ACS is almost identical to that of S.
cerevisiae, while in others such as K. lactis, it is very different. More alarmingly, at least
for bioinformaticians, in some yeast species such as S. pombe, the Origin Recognition
Complex binds to loosely defined AT-rich regions, which makes it next to impossible to
find replication origins based on sequence analysis alone.

Despite recent efforts, finding oriCs in yeast remains an open problem, and no
accurate software exists for predicting origins of replication from the sequence of yeast
genomes. Can you explore this problem and devise an algorithm to predict replication
origins in yeast?

Computing probabilities of patterns in a string

In the main text, we told you that the probability that a random DNA string of length 500
contains a 9-mer appearing three or more times is approximately 1/1300. In DETOUR: PAGE 52
Probabilities of Patterns in a String, we describe a method to estimate this probability,
but it is rather inaccurate. This open problem is aimed at finding better approximations
or even deriving exact formulas for probabilities of patterns in strings.

We start by asking a seemingly simple question: what is the probability that a
specific k-mer Pattern will appear (at least once) as a substring of a random string of
length N? This simple question proved to be not so simple and was first addressed by
Solov’ev, 1966 (see also Sedgewick and Flajolet, 2013).

The first surprise is that different k-mers may have different probabilities of appear-
ing in a random string. For example, the probability that Pattern = "01" appears in a
random binary string of length 4 is 11/16, while the probability that Pattern = "11"

appears in a random binary string of length 4 is 8/16. This phenomenon is called
the overlapping words paradox because different occurrences of Pattern can overlap
each other for some patterns (e.g., "11") but not others (e.g., "01"). See DETOUR: The PAGE 62
Overlapping Words Paradox.

We are interested in computing the following probabilities for a random N-letter
string in an A-letter alphabet:

• Pr(N, A, Pattern, t), the probability that a string Pattern appears at least t times in
a random string;

• Pr⇤(N, A, Pattern, t), the probability that a string Pattern and its reverse comple-
ment Pattern appear at least t total times in a random string.
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Note that the above two probabilities are relatively straightforward to compute.
Several variants of these are open:

• Prd(N, A, Pattern, t), the probability that a string Pattern approximately appears
at least t times in a random string (with at most d mismatches);

• Pr(N, A, k, t), the probability that there exists any k-mer appearing at least t times
in a random string;

• Prd(N, A, k, t), the probability that there exists any k-mer with at least t approxi-
mate occurrences in a random string (with at most d mismatches).
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Charging Stations

The frequency array

To make FREQUENTWORDS faster, we will think about why this algorithm is slow in
the first place. It slides a window of length k down Text, identifying a k-mer Pattern of
Text at each step. For each such k-mer, it must slide a window down the entire length
of Text in order to compute PATTERNCOUNT(Text, Pattern). Instead of doing all this
sliding, we aspire to slide a window down Text only once. As we slide this window, we
will keep track of the number of times that each k-mer Pattern has already appeared in
Text, updating these numbers as we proceed.

To achieve this goal, we will first order all 4k k-mers lexicographically (i.e., according
to how they would appear in the dictionary) and then convert them into the 4k different
integers between 0 and 4k � 1. Given an integer k, we define the frequency array of a
string Text as an array of length 4k, where the i-th element of the array holds the number
of times that the i-th k-mer (in the lexicographic order) appears in Text (Figure 1.19).

k -mer AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

frequency 3 0 2 0 1 0 0 0 0 1 3 1 0 0 1 0

FIGURE 1.19 The lexicographic order of DNA 2-mers (top), along with the index of each
k-mer in this order (middle), and the frequency array for AAGCAAAGGTGGG (bottom).
For example, the frequency array at index 10 is equal to 3 because GG, the tenth DNA
2-mer according to lexicographic order, occurs three times in AAGCAAAGGTGGG.

To compute the frequency array, we need to determine how to transform a k-mer
Pattern into an integer using a function PATTERNTONUMBER(Pattern). We also should
know how to reverse this process, transforming an integer between 0 and 4k � 1 into
a k-mer using a function NUMBERTOPATTERN(index, k). Figure 1.19 illustrates that
PATTERNTONUMBER(GT) = 11 and NUMBERTOPATTERN(11, 2) = GT.

EXERCISE BREAK: Compute the following:

1. PATTERNTONUMBER(ATGCAA)

2. NUMBERTOPATTERN(5437, 7)

3. NUMBERTOPATTERN(5437, 8)

39



W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

CHARGING STATION (Converting Patterns Into Numbers and Vice-Versa):
Check out this Charging Station to see how to implement PATTERNTONUMBER

and NUMBERTOPATTERN. PAGE
41

The pseudocode below generates a frequency array by first initializing every element in
the frequency array to zero (4k operations) and then making a single pass down Text
(approximately |Text| · k operations). For each k-mer Pattern that we encounter, we add
1 to the value of the frequency array corresponding to Pattern. As before, we refer to the
k-mer beginning at position i of Text as Text(i, k).

COMPUTINGFREQUENCIES(Text, k)
for i 0 to 4k � 1

FREQUENCYARRAY(i) 0

for i 0 to |Text|� k
Pattern Text(i, k)
j PATTERNTONUMBER(Pattern)
FREQUENCYARRAY(j) FREQUENCYARRAY(j) + 1

return FREQUENCYARRAY

1K

We now have a faster algorithm for the Frequent Words Problem. After generating
the frequency array, we can find all most frequent k-mers by simply finding all k-mers
corresponding to the maximum element(s) in the frequency array.

FASTERFREQUENTWORDS(Text , k)
FrequentPatterns an empty set
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
maxCount maximal value in FREQUENCYARRAY

for i 0 to 4k � 1
if FREQUENCYARRAY(i) = maxCount

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns
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CHARGING STATION (Finding Frequent Words by Sorting): Although
FASTERFREQUENTWORDS is fast for small k (i.e., you can use it to find DnaA
boxes in an oriC region), it becomes impractical when k is large. If you are familiar
with sorting algorithms and are interested in seeing a faster algorithm, check out
this Charging Station.

PAGE
43

EXERCISE BREAK: Our claim that FASTERFREQUENTWORDS is faster than
FREQUENTWORDS is only correct for certain values of |Text| and k. Esti-
mate the running time of FASTERFREQUENTWORDS and characterize the val-
ues of |Text| and k when FASTERFREQUENTWORDS is indeed faster than
FREQUENTWORDS.

Converting patterns to numbers and vice-versa

Our approach to computing PATTERNTONUMBER(Pattern) is based on a simple obser-
vation. If we remove the final symbol from all lexicographically ordered k-mers, the
resulting list is still ordered lexicographically (think about removing the final letter
from every word in a dictionary). In the case of DNA strings, every (k� 1)-mer in the
resulting list is repeated four times (Figure 1.20).

AAA AAC AAG AAT ACA ACC ACG ACT
AGA AGC AGG AGT ATA ATC ATG ATT
CAA CAC CAG CAT CCA CCC CCG CCT
CGA CGC CGG CGT CTA CTC CTG CTT
GAA GAC GAG GAT GCA GCC GCG GCT
GGA GGC GGG GGT GTA GTC GTG GTT
TAA TAC TAG TAT TCA TCC TCG TCT
TGA TGC TGG TGT TTA TTC TTG TTT

FIGURE 1.20 If we remove the final symbol from all lexicographically ordered DNA
3-mers, we obtain a lexicographic order of (red) 2-mers, where each 2-mer is repeated
four times.

Thus, the number of 3-mers occurring before AGT is equal to four times the number
of 2-mers occurring before AG plus the number of 1-mers occurring before T. Therefore,

PATTERNTONUMBER(AGT) = 4 · PATTERNTONUMBER(AG) + SYMBOLTONUMBER(T)

= 8 + 3 = 11 ,
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where SYMBOLTONUMBER(symbol) is the function transforming symbols A, C, G, and T
into the respective integers 0, 1, 2, and 3.

If we remove the final symbol of Pattern, denoted LASTSYMBOL(Pattern), then we
will obtain a (k� 1)-mer that we denote as PREFIX(Pattern). The preceding observation
therefore generalizes to the formula

PATTERNTONUMBER(Pattern) = 4 · PATTERNTONUMBER(PREFIX(Pattern))+

SYMBOLTONUMBER(LASTSYMBOL(Pattern)) . (*)

This equation leads to the following recursive algorithm, i.e., a program that calls itself.
If you want to learn more about recursive algorithms, see DETOUR: The Towers of PAGE 60
Hanoi.

PATTERNTONUMBER(Pattern)
if Pattern contains no symbols

return 0
symbol LASTSYMBOL(Pattern)
Prefix PREFIX(Pattern)
return 4 · PATTERNTONUMBER(Prefix) + SYMBOLTONUMBER(symbol)

1L

In order to compute the inverse function NUMBERTOPATTERN(index, k), we return to
(*) above, which implies that when we divide index = PATTERNTONUMBER(Pattern)
by 4, the remainder will be equal to SYMBOLTONUMBER(symbol), and the quotient will
be equal to PATTERNTONUMBER(PREFIX(Pattern)). Thus, we can use this fact to peel
away symbols at the end of Pattern one at a time, as shown in Figure 1.21.

STOP and Think: Once we have computed NUMBERTOPATTERN(9904, 7) in
Figure 1.21, how would you compute NUMBERTOPATTERN(9904, 8)?

In the pseudocode below, we denote the quotient and the remainder when dividing
integer n by integer m as QUOTIENT(n, m) and REMAINDER(n, m), respectively. For
example, QUOTIENT(11, 4) = 2 and REMAINDER(11, 4) = 3. This pseudocode uses the
function NUMBERTOSYMBOL(index), which is the inverse of SYMBOLTONUMBER and
transforms the integers 0, 1, 2, and 3 into the respective symbols A, C, G, and T.
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n QUOTIENT(n, 4) REMAINDER(n, 4) NUMBERTOSYMBOL

9904 2476 0 A
2476 619 0 A

619 154 3 T
154 38 2 G

38 9 2 G
9 2 1 C
2 0 2 G

⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9

FIGURE 1.21 When computing Pattern = NUMBERTOPATTERN(9904, 7), we divide
9904 by 4 to obtain a quotient of 2476 and a remainder of 0. This remainder represents
the final nucleotide of Pattern, or NUMBERTOSYMBOL(0) = A. We then iterate this
process, dividing each subsequent quotient by 4, until we obtain a quotient of 0. The
symbols in the nucleotide column, read upward from the bottom, yield Pattern =
GCGGTAA.

NUMBERTOPATTERN(index , k)
if k = 1

return NUMBERTOSYMBOL(index)

prefixIndex QUOTIENT(index, 4)
r REMAINDER(index, 4)
symbol NUMBERTOSYMBOL(r)
PrefixPattern NUMBERTOPATTERN(prefixIndex, k� 1)
return concatenation of PrefixPattern with symbol

1M

Finding frequent words by sorting

To see how sorting can help us find frequent k-mers, we will consider a motivating exam-
ple when k = 2. Given a string Text = AAGCAAAGGTGGG, list all its 2-mers in the order
they appear in Text, and convert each 2-mer into an integer using PATTERNTONUMBER

to produce an array INDEX, as shown below.

2-mer AA AG GC CA AA AA AG GG GT TG GG GG
INDEX 0 2 9 4 0 0 2 10 11 14 10 10

We will now sort INDEX to generate an array SORTEDINDEX, as shown in Figure 1.22.

STOP and Think: How can the sorted array in Figure 1.22 help us find frequent
words?
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2-mer AA AA AA AG AG CA GC GG GG GG GT TG
SORTEDINDEX 0 0 0 2 2 4 9 10 10 10 11 14

COUNT 1 2 3 1 2 1 1 1 2 3 1 1

FIGURE 1.22 Lexicographically sorted 2-mers in AAGCAAAGGTGG (top), along with
arrays SORTEDINDEX (middle) and COUNT (bottom).

Since identical k-mers clump together in the sorted array (like (0, 0, 0) for AA or
(10, 10, 10) for GG in Figure 1.22), frequent k-mers are the longest runs of identical inte-
gers in SORTEDINDEX. This insight leads to FINDINGFREQUENTWORDSBYSORTING,
whose pseudocode is shown below. This algorithm uses an array COUNT for which
COUNT(i) computes the number of times that the integer at position i in the array
SORTEDINDEX appears in the first i elements of this array (Figure 1.22 (bottom)). In the
pseudocode for FINDINGFREQUENTWORDSBYSORTING, we assume that you already
know how to sort an array using an algorithm SORT.

FINDINGFREQUENTWORDSBYSORTING(Text , k)
FrequentPatterns an empty set
for i 0 to |Text|� k

Pattern Text(i, k)
INDEX(i) PATTERNTONUMBER(Pattern)
COUNT(i) 1

SORTEDINDEX  SORT(INDEX)

for i 1 to |Text|� k
if SORTEDINDEX(i) = SORTEDINDEX(i� 1)

COUNT(i) = COUNT(i� 1) + 1

maxCount maximum value in the array COUNT

for i 0 to |Text|� k
if COUNT(i) = maxCount

Pattern NUMBERTOPATTERN(SORTEDINDEX(i), k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

Solving the Clump Finding Problem

Note: This Charging Station assumes that you have read CHARGING STATION: The
PAGE
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Frequency Array.
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The pseudocode below slides a window of length L down Genome. After computing
the frequency array for the current window, it identifies (L, t)-clumps simply by finding
which k-mers occur at least t times within the window. To keep track of these clumps,
our algorithm uses an array CLUMP of length 4k whose values are all initialized to
zero. For each value of i between 0 and 4k � 1, we will set CLUMP(i) equal to 1 if
NUMBERTOPATTERN(i, k) forms an (L, t)-clump in Genome.

CLUMPFINDING(Genome, k, t, L)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLUMP(i) 0

for i 0 to |Genome|� L
Text the string of length L starting at position i in Genome
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
for index 0 to 4k � 1

if FREQUENCYARRAY(index) � t
CLUMP(index) 1

for i 0 to 4k � 1
if CLUMP(i) = 1

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

EXERCISE BREAK: Estimate the running time of CLUMPFINDING.

CLUMPFINDING makes |Genome|� L + 1 iterations, generating a frequency array for a
string of length L at each iteration. Since this task takes roughly 4k + L · k time, the over-
all running time of CLUMPFINDING is O

⇣
|Genome| · (4k + L · k)

⌘
. As a result, when

searching for DnaA boxes (k = 9) in a typical bacterial genome (|Genome| > 1000000),
CLUMPFINDING becomes too slow.

STOP and Think: Can you speed up CLUMPFINDING by eliminating the need
to generate a new frequency array at every iteration?

To improve CLUMPFINDING, we observe that when we slide our window of length L
one symbol to the right, the frequency array does not change much, and so regener-
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ating the frequency array from scratch is inefficient. For example, Figure 1.23 shows
the frequency arrays (k = 2) for the 13-mers Text = AAGCAAAGGTGGG and Text0 =
AGCAAAGGTGGGC starting at positions 0 and 1 of the 14-mer AAGCAAAGGTGGGC. These
two frequency arrays differ in only two elements corresponding to the first k-mer in
Text (AA) and the last k-mer in Text’ (GC). Specifically, the frequency array value corre-
sponding to the first k-mer of Text is reduced by 1 in the frequency array of Text’, and
the frequency array value corresponding to the last k-mer of Text is increased by 1 in
the frequency array of Text’.

This observation helps us modify CLUMPFINDING as shown below. Note that we
now only call COMPUTINGFREQUENCIES once, updating the frequency array as we go
along.

BETTERCLUMPFINDING(Genome, k, t, L)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLUMP(i) 0

Text Genome(0, L)
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
for i 0 to 4k � 1

if FREQUENCYARRAY(i) � t
CLUMP(i) 1

for i 1 to |Genome|� L
FirstPattern Genome(i� 1, k)
index PATTERNTONUMBER(FirstPattern)
FREQUENCYARRAY(index) FREQUENCYARRAY(index)� 1
LastPattern Genome(i + L� k, k)
index PATTERNTONUMBER(LastPattern)
FREQUENCYARRAY(index) FREQUENCYARRAY(index) + 1
if FREQUENCYARRAY(index) � t

CLUMP(index) 1

for i 0 to 4k � 1
if CLUMP(i) = 1

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns
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k-mer AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
INDEX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

frequency 3 0 2 0 1 0 0 0 0 1 3 1 0 0 1 0
frequency’ 2 0 2 0 1 0 0 0 0 2 3 1 0 0 1 0

FIGURE 1.23 The frequency arrays for two consecutive substrings of length 13 starting
at positions 0 and 1 of Genome = AAGCAAAGGTGGGC are very similar to each other.

Solving the Frequent Words with Mismatches Problem

Note: This Charging Station uses some notation from CHARGING STATION: The
PAGE
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Frequency Array.

To prevent having to generate all 4k k-mers in order to solve the Frequent Words with
Mismatches Problem, our goal is to consider only those k-mers that are close to a k-mer
in Text, i.e., those with Hamming distance at most d from this k-mer. Given a k-mer
Pattern, we therefore define its d-neighborhood NEIGHBORS(Pattern, d) as the set of all
k-mers that are close to Pattern. For example, NEIGHBORS(ACG, 1) consists of ten 3-mers:

ACG CCG GCG TCG AAG AGG ATG ACA ACC ACT

EXERCISE BREAK: Estimate the size of NEIGHBORS(Pattern, d).

We will also use an array CLOSE of size 4k whose values we initialize to zero. In
the FREQUENTWORDSWITHMISMATCHES pseudocode below, we set CLOSE(i) = 1
whenever Pattern = NUMBERTOPATTERN(i, k) is close to some k-mer in Text. This
allows us to apply APPROXIMATEPATTERNCOUNT only to close k-mers, a smarter
approach than applying it to all k-mers.

CHARGING STATION (Generating the Neighborhood of a String):
FREQUENTWORDSWITHMISMATCHES also calls NEIGHBORS(Pattern, d), a
function that generates the d-neighborhood of a k-mer Pattern. Check out this
Charging Station to learn how to implement this function.

PAGE
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STOP and Think: Although FREQUENTWORDSWITHMISMATCHES is faster
than the naive algorithm described in the main text for the typical parameters
used in oriC searches, it is not necessarily faster for all parameter values. For
which parameter values is FREQUENTWORDSWITHMISMATCHES slower than
the naive algorithm?
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FREQUENTWORDSWITHMISMATCHES(Text, k, d)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLOSE(i) 0
FREQUENCYARRAY  0

for i 0 to |Text|� k
Neighborhood NEIGHBORS(Text(i, k), d)
for each Pattern from Neighborhood

index PATTERNTONUMBER(Pattern)
CLOSE(index) 1

for i 0 to 4k � 1
if CLOSE(i) = 1

Pattern NUMBERTOPATTERN(i, k)
FREQUENCYARRAY(i) APPROXIMATEPATTERNCOUNT(Text, Pattern, d)

maxCount maximal value in FREQUENCYARRAY

for i 0 to 4k � 1
if FREQUENCYARRAY(i) = maxCount

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

CHARGING STATION (Finding Frequent Words with Mismatches by Sort-
ing): If you are familiar with sorting and are interested in seeing an even faster
algorithm for the Frequent Words with Mismatches Problem, check out this
Charging Station.

PAGE
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Generating the neighborhood of a string

Our goal is to generate the d-neighborhood NEIGHBORS(Pattern, d), the set of all k-mers
whose Hamming distance from Pattern does not exceed d. We will first generate the
1-neigborhood of Pattern using the following pseudocode.

IMMEDIATENEIGHBORS(Pattern)
Neighborhood the set consisting of single string Pattern
for i = 1 to |Pattern|

symbol i-th nucleotide of Pattern
for each nucleotide x different from symbol

Neighbor Pattern with the i-th nucleotide substituted by x
add Neighbor to Neighborhood

return Neighborhood

Our idea for generating NEIGHBORS(Pattern, d) is as follows. If we remove the first
symbol of Pattern (denoted FIRSTSYMBOL(Pattern)), then we will obtain a (k� 1)-mer
that we denote by SUFFIX(Pattern).

STOP and Think: If we know NEIGHBORS(SUFFIX(Pattern), d), how does it help
us construct NEIGHBORS(Pattern, d)?

Now, consider a (k � 1)-mer Pattern’ belonging to NEIGHBORS(SUFFIX(Pattern), d).
By the definition of the d-neighborhood NEIGHBORS(SUFFIX(Pattern), d), we know
that HAMMINGDISTANCE(Pattern0, SUFFIX(Pattern)) is either equal to d or less than
d. In the first case, we can add FIRSTSYMBOL(Pattern) to the beginning of Pattern’
in order to obtain a k-mer belonging to NEIGHBORS(Pattern, d). In the second case,
we can add any symbol to the beginning of Pattern’ and obtain a k-mer belonging to
NEIGHBORS(Pattern, d).

In the following pseudocode, we use the notation symbol • Text to denote the con-
catenation of a character symbol and a string Text, e.g., A • GCATG = AGCATG.
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NEIGHBORS(Pattern, d)
if d = 0

return {Pattern}
if |Pattern| = 1

return {A,C,G,T}
Neighborhood an empty set
SuffixNeighbors NEIGHBORS(SUFFIX(Pattern), d)
for each string Text from SuffixNeighbors

if HAMMINGDISTANCE(SUFFIX(Pattern), Text) < d
for each nucleotide x

add x • Text to Neighborhood

else
add FIRSTSYMBOL(Pattern) • Text to Neighborhood

return Neighborhood

1N

STOP and Think: Consider the following questions.

1. What is the running time of NEIGHBORS?

2. NEIGHBORS generates all k-mers of Hamming distance at most d from
Pattern. Modify NEIGHBORS to generate all k-mers of Hamming distance
exactly d from Pattern.

If you are still learning how recursive algorithms (like NEIGHBORS) work, you may
want to implement an iterative version of NEIGHBORS instead, shown below.

ITERATIVENEIGHBORS(Pattern, d)
Neighborhood set consisting of single string Pattern
for j = 1 to d

for each string Pattern’ in Neighborhood
add IMMEDIATENEIGHBORS(Pattern0) to Neighborhood
remove duplicates from Neighborhood

return Neighborhood
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Finding frequent words with mismatches by sorting

Note: This Charging Station uses some notation from CHARGING STATION: Finding
PAGE
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Frequent Words by Sorting.

The following pseudocode reduces the Frequent Words with Mismatches Problem
to sorting.

FINDINGFREQUENTWORDSWITHMISMATCHESBYSORTING(Text, k, d)
FrequentPatterns an empty set
Neighborhoods an empty list
for i 0 to |Text|� k

add NEIGHBORS(Text(i, k), d) to Neighborhoods

form an array NEIGHBORHOODARRAY holding all strings in Neighborhoods
for i 0 to |Neighborhoods|� 1

Pattern NEIGHBORHOODARRAY(i)
INDEX(i) PATTERNTONUMBER(Pattern)
COUNT(i) 1

SORTEDINDEX  SORT(INDEX)

for i 0 to |Neighborhoods|� 1
if SORTEDINDEX(i) = SORTEDINDEX(i + 1)

COUNT(i + 1) COUNT(i) + 1

maxCount maximum value in array COUNT

for i 0 to |Neighborhoods|� 1
if COUNT(i) = maxCount

Pattern NUMBERTOPATTERN(SORTEDINDEX(i), k)
add Pattern to FrequentPatterns

return FrequentPatterns
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Detours

Big-O notation

Computer scientists typically measure an algorithm’s efficiency in terms of its worst-
case running time, which is the largest amount of time an algorithm can take for the
most difficult input of a given size. The advantage to considering the worst-case running
time is that we are guaranteed that our algorithm will never behave worse than our
worst-case estimate.

Big-O notation compactly describes the running time of an algorithm. For example,
if your algorithm for sorting an array of n numbers takes roughly n2 operations for the
most difficult dataset, then we say that the running time of your algorithm is O�

n2�.
In reality, depending on your implementation, it may use any number of operations,
such as 1.5n2, n2 + n + 2, or 0.5n2 + 1; all these algorithms are O�

n2� because big-O
notation only cares about the term that grows the fastest with respect to the size of the
input. This is because as n grows very large, the difference in behavior between two
O�

n2� functions, like 999 · n2 and n2 + 3n + 9999999, is negligible when compared to
the behavior of functions from different classes, say O�

n2� and O�
n6�. Of course, we

would prefer an algorithm requiring 1/2 · n2 steps to an algorithm requiring 1000 · n2

steps.
When we write that the running time of an algorithm is O�

n2�, we technically
mean that it does not grow faster than a function with a leading term of c · n2, for
some constant c. Formally, a function f (n) is Big-O of function g(n), or O(g(n)), when
f (n)  c · g(n) for some constant c and sufficiently large n.

Probabilities of patterns in a string

We mentioned that the probability that some 9-mer appears 3 or more times in a random
DNA string of length 500 is approximately 1/1300. We assure you that this calculation
does not appear out of thin air. Specifically, we can generate a random string modeling
a DNA strand by choosing each nucleotide for any position with probability 1/4. The
construction of random strings can be generalized to an arbitrary alphabet with A
symbols, where each symbol is chosen with probability 1/A.

EXERCISE BREAK: What is the probability that two randomly generated strings
of length n in an A-letter alphabet are identical?

We now ask a simple question: what is the probability that a specific k-mer Pattern will
appear (at least once) as a substring of a random string of length N? For example, say
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that we want to find the probability that "01" appears in a binary string (A = 2) of
length 4. Here are all possible such strings.

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Because "01" is a substring of 11 of these 4-mers, and because each 4-mer could be
generated with probability 1/16, the probability that "01" appears in a random binary
4-mer is 11/16.

STOP and Think: What is the probability that Pattern = "11" appears as a sub-
string of a random binary 4-mer?

Surprisingly, changing Pattern from "01" to "11" changes the probability that it appears
as a substring of a random binary string. Indeed, "11" appears in only 8 binary 4-mers:

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

As a result, the probability of "11" appearing in a random binary string of length 4 is
8/16 = 1/2.

STOP and Think: Why do you think that "11" is less likely than "01" to appear
as a substring of a random binary 4-mer?

Let Pr(N, A, Pattern, t) denote the probability that a string Pattern appears t or more
times in a random string of length N formed from an alphabet of A letters. We saw that
Pr(4, 2, "01", 1) = 11/16 while Pr(4, 2, "11", 1) = 1/2. Interestingly, when we make t
greater than 1, we see that "01" is less likely to appear multiple times than "11". For
example, the probability of finding "01" twice or more in a random binary 4-mer is
given by Pr(4, 2, "01", 2) = 1/16 because "0101" is the only binary 4-mer containing
"01" twice, and yet Pr(4, 2, "11", 2) = 3/16 because binary 4-mers "0111", "1110" and
"1111" all have at least two occurrences of "11".

EXERCISE BREAK: Compute Pr(100, 2, "01", 1).

We have seen that different k-mers have different probabilities of occurring multiple
times as a substring of a random string. In general, this phenomenon is called the
overlapping words paradox because different substring occurrences of Pattern can
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overlap each other for some choices of Pattern but not others (see DETOUR: The PAGE 62
Overlapping Words Paradox).

For example, there are two overlapping occurrences of "11" in "1110", and three
overlapping occurrences of "11" in "1111"; yet occurrences of "01" can never overlap
with each other, and so "01" can never occur more than twice in a binary 4-mer. The
overlapping words paradox makes computing Pr(N, A, Pattern, t) a rather complex
problem because this probability depends heavily on the particular choice of Pattern. In
light of the complications presented by the overlapping words paradox, we will try to
approximate Pr(A, N, Pattern, t) rather than compute it exactly.

To approximate Pr(N, A, Pattern, t), we will assume that the k-mer Pattern is not
overlapping. As a toy example, say we we wish to count the number of ternary strings
(A = 3) of length 7 that contain "01" at least twice. Apart from the two occurrences of
"01", we have three remaining symbols in the string. Let’s assume that these symbols
are all "2". The two occurrences of "01" can be inserted into "222" in ten different ways
to form a 7-mer, as shown below.

0101222 0120122 0122012 0122201 2010122

2012012 2012201 2201012 2201201 2220101

We inserted these two occurrences of "01" into "222", but we could have inserted
them into any other ternary 3-mer. Because there are 33 = 27 ternary 3-mers, we obtain
an approximation of 10 · 27 = 270 for the number of ternary 7-mers that contain two or
more instances of "01". Because there are 37 = 2187 ternary 7-mers, we estimate the
probability Pr(7, 3, "01", 2) as 270/2187.

STOP and Think: Is 270/2187 a good approximation for Pr(7, 3, "01", 2)? Is the
true probability Pr(7, 3, "01", 2) larger or smaller than 270/2187?

To generalize the above method to approximate Pr(N, A, Pattern, t) for arbitrary param-
eter values, consider a string Text of length N having at least t occurrences of a k-mer
Pattern. If we select exactly t of these occurrences, then we can think about Text as a
sequence of n = N � t · k symbols interrupted by t insertions of the k-mer Pattern. If we
fix these n symbols, then we wish to count the number of different strings Text that can
be formed by inserting t occurrences of Pattern into a string formed by these n symbols.

For example, consider again the problem of embedding two occurrences of "01"
into "222" (n = 3), and note that we have added five copies of a capital "X" below each
7-mer.
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0101222 0120122 0122012 0122201 2010122
X X XXX X XX XX X XXX X X XXXX XX X XX

2012012 2012201 2201012 2201201 2220101
XX XX X XX XXX XXX X X XXX XX XXXX X

What do the "X" mean? Instead of counting the number of ways to insert two occur-
rences of "01" into "222", we can count the number of ways to select two of the five
"X" to color blue.

XXXXX XXXXX XXXXX XXXXX XXXXX

XXXXX XXXXX XXXXX XXXXX XXXXX

In other words, we are counting the number of ways to choose 2 out of 5 objects, which
can be counted by the binomial coefficient (5

2) = 10. More generally, the binomial
coefficient (m

k ) represents the number of ways to choose k out of m objects and is equal
to m!

�
k!(m� k)!

STOP and Think: How many ways are there to implant t instances of a (nonover-
lapping) k-mer into a string of length n to produce a string of length n + t · k?

To approximate Pr(N, A, Pattern, t), we want to count the number of ways to insert t
instances of a k-mer Pattern into a fixed string of length n = N � t · k. We will therefore
have n + t occurrences of "X", from which we must select t for the placements of Pattern,
giving a total of (n+t

t ). We then need to multiply (n+t
t ) by the number of strings of

length n into which we can insert t instances of Pattern to have an approximate total of
(n+t

t ) · An (the actual number will be smaller because of over-counting). Dividing by
the number of strings of length N, we have our desired approximation,

Pr(N, A, Pattern, t) ⇡ (n+t
t ) · An

AN =
(N�t·(k�1)

t )

At·k .

We will now compute the probability that the specific 5-mer ACTAT occurs at least
t = 3 times in a random DNA string (A = 4) of length N = 30. Since n = N� t · k = 15,
our estimated probability is

Pr(30, 4,ACTAT, 3) ⇡ (30�3·4
3 )

415 =
816

1073741824
⇡ 7.599 · 10�7 .

The exact probability is closer to 7.572 · 10�7, illustrating that our approximation is
relatively accurate for non-overlapping patterns. However, it becomes inaccurate for
overlapping patterns, e.g., Pr(30, 4,AAAAA, 3) ⇡ 1.148 · 10�3.
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We should not be surprised that the probability of finding ACTAT in a random
DNA string of length 30 is so low. However, remember that our original goal was to
approximate the probability that there exists some 5-mer appearing three or more times.
In general, the probability that some k-mer appears t or more times in a random string
of length N formed over an A-letter alphabet is written Pr(N, A, k, t).

We approximated Pr(N, A, Pattern, t) as

p =
(N�t·(k�1)

t )

At·k .

Notice that the approximate probability that Pattern does not appear t or more times is
therefore 1� p. Thus, the probability that all Ak patterns appear fewer than t times in a
random string of length N can be approximated as

(1� p)Ak .

Moreover, the probability that there exists a k-mer appearing t or more times should be
1 minus this value, which gives us the following approximation:

Pr(N, A, k, t) ⇡ 1� (1� p)Ak .

Your calculator may have difficulty with this formula, which requires raising a
number close to 1 to a very large power and can cause round-off errors. To avoid
this, if we assume that p is about the same for any Pattern, then we can approximate
Pr(N, A, k, t) by multiplying p by the total number of k-mers Ak,

Pr(N, A, k, t) ⇡ p · Ak =
(N�t·(k�1)

t )

At·k · Ak =
(N�t·(k�1)

t )

A(t�1)·k .

We acknowledge again that this approximation is a gross over-simplification, since the
probability Pr(N, A, Pattern, t) varies across different choices of k-mers and because it
assumes that occurrences of different k-mers are independent events. For example, in
the main text, we wish to approximate Pr(500, 4, 9, 3), and the above formula results in
the approximation

Pr(500, 4, 9, 3) ⇡ (500�3·8
3 )

4(3�1)·9 =
17861900

68719476736
⇡ 1

3847
.

Because of overlapping strings, this approximation deviates from the true value of
which is closer to 1/1300. To see how to obtain more precise estimates, see Guibas and
Odlyzko, 1981.
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The most beautiful experiment in biology

The Meselson-Stahl experiment, conducted in 1958 by Matthew Meselson and Franklin
Stahl, is sometimes called “the most beautiful experiment in biology”. In the late 1950s,
biologists debated three conflicting models of DNA replication, illustrated in Figure 1.24.
The semiconservative hypothesis (recall Figure 1.1 from page 3), suggested that each
parent strand acts as a template for the synthesis of a daughter strand. As a result, each
of the two daughter molecules contains one parent strand and one newly synthesized
strand. The conservative hypothesis proposed that the entire double-stranded parent
DNA molecule serves as a template for the synthesis of a new daughter molecule, result-
ing in one molecule with two parent strands and another with two newly synthesized
strands. The dispersive hypothesis proposed that some mechanism breaks the DNA
backbone into pieces and splices intervals of synthesized DNA, so that each of the
daughter molecules is a patchwork of old and new double-stranded DNA.

Semiconservative Conservative Dispersive 

Parental 
DNA 

After 1 round 
of replication 

After 2 rounds 
of replication 

FIGURE 1.24 Semiconservative, conservative, and dispersive models of DNA replication
make different predictions about the distribution of DNA strands after replication. Yellow
strands indicate 15N (heavy) segments of DNA, and black strands indicate 14N (light)
segments. The Meselson-Stahl experiment began with DNA consisting of 100% 15N.

Meselson and Stahl’s insight was that one isotope of nitrogen, Nitrogen-14 (14N),
is lighter and more abundant than Nitrogen-15 (15N). Knowing that DNA naturally
contains 14N , Meselson and Stahl grew E. coli for many rounds of replication in a 15N
medium, which caused the bacteria to gain weight as they absorbed the heavier isotope
into their DNA. When they were confident that the bacterial DNA was saturated with
15N, they transferred the heavy E. coli cells to a less dense 14N medium.
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STOP and Think: What do you think happened when the “heavy” E. coli repli-
cated in the “light” 14N medium?

The brilliance of the Meselson-Stahl experiment is that all newly synthesized DNA
would contain exclusively 14N, and the three existing hypotheses for DNA replication
predicted different outcomes for how this 14N isotope would be incorporated into DNA.
Specifically, after one round of replication, the conservative model predicted that half
the E. coli DNA would still have only 15N and therefore be heavier whereas the other
half would have only 14N and be lighter. Yet when they attempted to separate the E. coli
DNA according to weight by using a centrifuge after one round of replication, all of the
DNA had the same density! Just like that, they had refuted the conservative hypothesis
once and for all.

Unfortunately, this experiment was not able to eliminate either of the other two
models, as both the dispersive and semiconservative hypotheses predicted that all of
the DNA after one round of replication would have the same density.

STOP and Think: What would the dispersive and semiconservative models
predict about the density of E. coli DNA after two rounds of replication?

Let’s first consider the dispersive model, which says that each daughter strand of DNA
is formed by half mashed up pieces of the parent strand, and half new DNA. If this
hypothesis were true, then after two replication cycles, any daughter strand of DNA
should contain about 25% 15N and about 75% 14N. In other words, all the DNA should
still have the same density. And yet when Meselson and Stahl spun the centrifuge after
two rounds of E. coli replication, this is not what they observed!

Instead, they found that the DNA divided into two different densities. This is exactly
what the semiconservative model predicted: after one cycle, every cell should possess
one 14N strand and one 15N strand; after two cycles, half of the DNA molecules should
have one 14N strand and one 15N strand, while the other half should have two 14N
strands, producing the two different densities they noticed.

STOP and Think: What does the semi-conservative model predict about the
density of E. coli DNA after three rounds of replication?

Meselson and Stahl had rejected the conservative and dispersive hypotheses of repli-
cation, and yet they wanted to make sure that the semiconservative hypothesis was
confirmed by further E. coli replication. This model predicted that after three rounds of
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replication, one-quarter of the DNA molecules should still have a 15N strand, causing
25% of the DNA to have an intermediate density, whereas the remaining 75% should be
lighter, having only 14N. This is indeed what Meselson and Stahl witnessed in the lab,
and the semiconservative hypothesis has stood strong to this day.

Directionality of DNA strands

The sugar component of a nucleotide has a ring of five carbon atoms, which are labeled
as 10, 20, 30, 40, and 50 in Figure 1.25 (left). The 50 atom is joined onto the phosphate
group in the nucleotide and eventually to the 30 end of the neighboring nucleotide. The
30 atom is joined onto another neighboring nucleotide in the nucleic acid chain. As a
result, we call the two ends of the nucleotide the 5’-end and the 3’-end (pronounced
“five prime end” and "three prime end”, respectively).

Base 

H OH 

OH 

O 

O 

O 
O 

P 

4’ 

5’ 

3’ 2’ 

1’ 

FIGURE 1.25 A nucleotide with sugar ring carbon atoms labeled 1’, 2’, 3’, 4’, and 5’.

When we zoom out to the level of the double helix, we can see in Figure 1.25 (right)
that any DNA fragment is oriented with a 30 atom on one end and a 50 atom on the
other end. As a standard, a DNA strand is always read in the 50 ! 30 direction. Note
that the orientations run opposite to each other in complementary strands.
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The Towers of Hanoi

The Towers of Hanoi puzzle consists of three vertical pegs and a number of disks of
different sizes, each with a hole in its center so that it fits on the pegs. The disks are
initially stacked on the left peg (peg 1) so that disks increase in size from the top down
(Figure 1.26). The puzzle is played by moving one disk at a time between pegs, with the
goal of moving all disks from the left peg (peg 1) to the right peg (peg 3). However, you
are not allowed to place a disk on top of a smaller disk.

FIGURE 1.26 The Towers of Hanoi puzzle.

Towers of Hanoi Problem:
Solve the Towers of Hanoi puzzle.

Input: An integer n.
Output: A sequence of moves that will solve the Towers of Hanoi puzzle
with n disks.

STOP and Think: What is the minimum number of steps needed to solve the
Towers of Hanoi Problem for three disks?

Let’s see how many steps are required to solve the Towers of Hanoi Problem for four
disks. The first important observation is that sooner or later you will have to move the
largest disk to the right peg. However, in order to move the largest disk, we first have
to move all three smallest disks off the first peg. Furthermore, these three smallest disks
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must all be on the same peg because the largest disk cannot be placed on top of another
disk. Thus, we first have to move the top three disks to the middle peg (7 moves), then
move the largest disk to the right peg (1 move), then again move the three smallest
disks from the middle peg to the top of the largest disk on the right peg (another 7
moves), for a total of 15 moves.

More generally, let T(n) denote the minimum number of steps required to solve the
Towers of Hanoi puzzle with n disks. To move n disks from the left peg to the right
peg, you first need to move the n� 1 smallest disks from the left peg to the middle peg
(T(n� 1) steps), then move the largest disk to the right peg (1 step), and finally move
the n� 1 smallest disks from the middle peg to the right peg (T(n� 1) steps). This
yields the recurrence relation

T(n) = 2T(n� 1) + 1 .

STOP and Think: Using the above recurrence relation, can you find a formula
for T(n) that does not require recursion?

We now have a recursive algorithm to move n disks from the left peg to the right peg.
We will use three variables (each taking a different value from 1, 2, and 3) to denote
the three pegs: startPeg, destinationPeg, and transitPeg. These three variables always
represent different pegs, and so startPeg + destinationPeg + transitPeg is always equal to
1 + 2 + 3 = 6. HANOITOWERS(n, startPeg, destinationPeg) moves n disks from startPeg
to destinationPeg (using transitPeg as a temporary destination).

HANOITOWERS(n, startPeg, destinationPeg)
if n = 1

Move top disk from startPeg to destinationPeg
return

transitPeg = 6� startPeg� destinationPeg
HANOITOWERS(n� 1, startPeg, transitPeg)
Move top disk from startPeg to destinationPeg
HANOITOWERS(n� 1, transitPeg, destinationPeg)
return

Even though this algorithm may seem straightforward, moving a 100-disk tower would
require more steps than the number of atoms in the universe! The fast growth of the
number of moves required by HANOITOWERS is explained by the fact that every time
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HANOITOWERS is called for n disks, it calls itself twice for n� 1, which in turn trig-
gers four calls for n � 2, and so on. For example, a call to HANOITOWERS(4, 1, 3)
results in calls HANOITOWERS(3, 1, 2) and HANOITOWERS(3, 2, 3); these calls, in
turn, call HANOITOWERS(2, 1, 3), HANOITOWERS(2, 3, 2), HANOITOWERS(2, 2, 1),
and HANOITOWERS(2, 1, 3).

The overlapping words paradox

We illustrate the overlapping words paradox with a two-player game called “Best Bet
for Simpletons”. Player 1 selects a binary k-mer A, and Player 2, knowing what A is,
selects a different binary k-mer B. The two players then flip a coin multiple times, with
coin flips represented by strings of "1" (“heads”) and "0" (“tails”); the game ends when
A or B appears as a block of k consecutive coin flips.

STOP and Think: Do the two players always have the same chance of winning?

At first glance, you might guess that every k-mer has an equal chance of winning. Yet
suppose that Player 1 chooses "00" and Player 2 chooses "10". After two flips, either
Player 1 wins ("00"), Player 2 wins ("10"), or the game continues ("01" or "11"). If
the game continues, then Player 1 should surrender, since Player 2 will win as soon as
“tails” ("0") is next flipped. Player 2 is therefore three times more likely to win!

It may seem that Player 1 should have the advantage by simply selecting the
“strongest” k-mer. However, an intriguing feature of Best Bet for Simpletons is that if
k > 2, then Player 2 can always choose a k-mer B that beats A, regardless of Player 1’s
choice of A. Another surprise is that Best Bet for Simpletons is a non-transitive game:
if A defeats B, and B defeats C, then we cannot automatically conclude that A defeats C
(c.f. rock-paper-scissors).

The analysis of Best Bet for Simpletons is based on the notion of a correlation
polynomial. We say that B i-overlaps with A if the last i digits of A coincide with the
first i digits of B. For example, "110110" 1-overlaps, 2-overlaps, and 5-overlaps with
"011011", as shown in Figure 1.27.

Given two k-mers A and B, the correlation of A and B, denoted CORR(A, B) =

(c0, . . . , ck�1), is a k-letter binary word such that ci = 1 if B (k� i)-overlaps with A, and
0 otherwise. The correlation polynomial of A and B is defined as

KA,B(t) = c0 + c1 · t + c2 · t2 + · · ·+ ck�1 · tk�1 .
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CORR(A,B)
B = 110110 0
B = 110110 1
B = 110110 0
B = 110110 0
B = 110110 1
B = 110110 1
A = 011011

FIGURE 1.27 The correlation of k-mers A = "011011" and B = "110110" is the string
"010011".

For the strings A and B in Figure 1.27, their correlation is "010011" and their correlation
polynomial is KA,B(t) = t + t4 + t5.

Next, we write KA,B as shorthand for KA,B(1/2). For the example in Figure 1.27,
KA,B = 1

2 + 1
16 + 1

32 = 19
32 . John Conway suggested the following deceivingly simple

formula to compute the odds that B will defeat A:

KA,A � KA,B
KB,B � KB,A

Conway never published a proof of this formula, and Martin Gardner, a leading popular
mathematics writer, said the following about the formula:

I have no idea why it works. It just cranks out the answer as if by magic, like so
many of Conway’s other algorithms.
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Do We Have a “Clock” Gene?

The daily schedules of animals, plants, and even bacteria are controlled by an internal
timekeeper called the circadian clock. Anyone who has experienced the misery of jet
lag knows that this clock never stops ticking. Rats and research volunteers alike, when
placed in a bunker, naturally maintain a roughly 24-hour cycle of activity and rest in
total darkness. And, like any timepiece, the circadian clock can malfunction, resulting
in a genetic disease known as delayed sleep-phase syndrome (DSPS).

The circadian clock must have some basis on the molecular level, which presents
many questions. How do individual cells in animals and plants (let alone bacteria) know
when they should slow down or increase the production of certain proteins? Is there
a “clock gene”? Can we explain why heart attacks occur more often in the morning,
while asthma attacks are more common at night? And can we identify genes that are
responsible for “breaking” the circadian clock to cause DSPS?

In the early 1970s, Ron Konopka and Seymour Benzer identified mutant flies with
abnormal circadian patterns and traced the flies’ mutations to a single gene. Biologists
needed two more decades to discover a similar clock gene in mammals, which was just
the first piece of the puzzle. Today, many more circadian genes have been discovered;
these genes, having names like timeless, clock, and cycle, orchestrate the behavior of
hundreds of other genes and display a high degree of evolutionary conservation across
species.

We will first focus on plants, since maintaining the circadian clock in plants is a
matter of life and death. Consider how many plant genes should pay attention to the
time when the sun rises and sets; indeed, biologists estimate that over a thousand plant
genes are circadian, including the genes related to photosynthesis, photo reception, and
flowering. These genes must somehow know what time it is in order to change their
gene transcript production, or gene expression, throughout the day (see DETOUR: PAGE 107
Gene Expression).

It turns out that every plant cell keeps track of day and night independently of other
cells, and that just three plant genes, called LCY, CCA1, and TOC1, are the clock’s master
timekeepers. Such regulatory genes, and the regulatory proteins that they encode, are
often controlled by external factors (e.g., nutrient availability or sunlight) in order to
allow organisms to adjust their gene expression.

For example, regulatory proteins controlling the circadian clock in plants coordinate
circadian activity as follows. TOC1 promotes the expression of LCY and CCA1, whereas
LCY and CCA1 repress the expression of TOC1, resulting in a negative feedback loop.
In the morning, sunlight activates the transcription of LCY and CCA1, triggering the
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repression of TOC1 transcription. As light diminishes, so does the production of LCY
and CCA1, which in turn do not repress TOC1 any more. Transcription of TOC1 peaks
at night and starts promoting the transcription of LCY and CCA1, which in turn repress
the transcription of TOC1, and the cycle begins again.

LCY, CCA1, and TOC1 are able to control the transcription of other genes because
the regulatory proteins that they encode are transcription factors, or master regulatory
proteins that turn other genes on and off. A transcription factor regulates a gene by bind-
ing to a specific short DNA interval called a regulatory motif, or transcription factor
binding site, in the gene’s upstream region, a 600-1000 nucleotide-long region preced-
ing the start of the gene. For example, CCA1 binds to AAAAAATCT in the upstream
region of many genes regulated by CCA1.

The life of a bioinformatician would be easy if regulatory motifs were completely
conserved, but the reality is more complex, as regulatory motifs may vary at some
positions, e.g., CCA1 may instead bind to AAGAACTCT. But how can we locate these
regulatory motifs without knowing what they look like in advance? We need to develop
algorithms for motif finding, the problem of discovering a “hidden message” shared
by a collection of strings.

Motif Finding Is More Difficult Than You Think

Identifying the evening element

In 2000, Steve Kay used DNA arrays (see DETOUR: DNA Arrays) to determine which PAGE 107
genes in the plant Arabidopsis thaliana are activated at different times of the day. He then
extracted the upstream regions of nearly 500 genes that exhibited circadian behavior
and looked for frequently appearing patterns in their upstream regions. If you concate-
nated these upstream regions into a single string, you would find that AAAATATCT is a
surprisingly frequent word, appearing 46 times.

EXERCISE BREAK: What is the expected number of occurrences of a 9-mer in
500 random DNA strings, each of length 1000?

Kay named AAAATATCT the evening element and performed a simple experiment to
prove that it is indeed the regulatory motif responsible for circadian gene expression in
Arabidopsis thaliana. After he mutated the evening element in the upstream region of
one gene, the gene lost its circadian behavior.
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Whereas the evening element in plants is very conserved, and thus easy to find,
motifs having many mutations are more elusive. For example, if you infect a fly with
a bacterium, the fly will switch on its immunity genes to fight the infection. Thus,
some of the genes with elevated expression levels after the infection are likely to be
immunity genes. Indeed, some of these genes have 12-mers similar to TCGGGGATTTCC
in their upstream regions, the binding site of a transcription factor called NF-kB that
activates various immunity genes in flies. However, NF-kB binding sites are nowhere
near as conserved as the evening element. Figure 2.1 shows ten NF-kB binding sites
from the Drosophila melanogaster genome; the most popular nucleotides in every column
are shown by upper case colored letters.

1 T C G G G G g T T T t t
2 c C G G t G A c T T a C
3 a C G G G G A T T T t C
4 T t G G G G A c T T t t
5 a a G G G G A c T T C C
6 T t G G G G A c T T C C
7 T C G G G G A T T c a t
8 T C G G G G A T T c C t
9 T a G G G G A a c T a C

10 T C G G G t A T a a C C

FIGURE 2.1 The ten candidate NF-kB binding sites appearing in the Drosophila
melanogaster genome. The upper case colored letters indicate the most frequent
nucleotide in each column.

Hide and seek with motifs

Our aim is to turn the biological challenge of finding regulatory motifs into a compu-
tational problem. Below, we have implanted a 15-mer hidden message at a randomly
selected position in each of ten randomly generated DNA strings. This example mimics
a transcription factor binding site hiding in the upstream regions of ten genes.

1 atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga
3 tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag
6 gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga
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STOP and Think: Can you find the implanted hidden message?

This is a simple problem: applying an algorithm for the Frequent Words Problem to the
concatenation of these strings will immediately reveal the most frequent 15-mer shown
below as the implanted pattern. Since these short strings were randomly generated, it
is unlikely that they contain other frequent 15-mers.

1 atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa
3 tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag
6 gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa

Now imagine that instead of implanting exactly the same pattern into all sequences,
we mutate the pattern before inserting it into each sequence by randomly changing
the nucleotides at four randomly selected positions within each implanted 15-mer, as
shown below.

1 atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa
3 tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag
6 gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

The Frequent Words Problem is not going to help us, since AAAAAAAAGGGGGGG does
not even appear in the sequences above. Perhaps, then, we could apply our solution to
the Frequent Words with Mismatches Problem. However, in Chapter 1, we implemented
an algorithm for the Frequent Words with Mismatches Problem aimed at finding hidden
messages with a small number of mismatches and a small k-mer size (e.g., one or two
mismatches for DnaA boxes of length 9). This algorithm is likely to become too slow
when searching for the implanted motif above, which is longer and has more mutations.

Furthermore, concatenating all the sequences into a single string is inadequate
because it does not correctly model the biological problem of motif finding. A DnaA
box is a pattern that clumps, or appears frequently, within a relatively short interval
of the genome. In contrast, a regulatory motif is a pattern that appears at least once
(perhaps with variation) in each of many different regions that are scattered throughout
the genome.
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A brute force algorithm for motif finding

Given a collection of strings Dna and an integer d, a k-mer is a (k, d)-motif if it appears
in every string from Dna with at most d mismatches. For example, the implanted 15-mer
in the strings above represents a (15, 4)-motif.

Implanted Motif Problem:
Find all (k, d)-motifs in a collection of strings.

Input: A collection of strings Dna, and integers k and d.
Output: All (k, d)-motifs in Dna.

Brute force (also known as exhaustive search) is a general problem-solving technique
that explores all possible candidate solutions and checks whether each candidate solves
the problem. Such algorithms require little effort to design and are guaranteed to
produce a correct solution, but they may take an enormous amount of time, and the
number of candidates may be too large to check.

A brute force approach for solving the Implanted Motif Problem is based on the
observation that any (k, d)-motif must be at most d mismatches apart from some k-mer
appearing in one of the strings of Dna. Therefore, we can generate all such k-mers and
then check which of them are (k, d)-motifs. If you have forgotten how to generate these
k-mers, recall CHARGING STATION: Generating the Neighborhood of a String.

PAGE
49MOTIFENUMERATION(Dna, k, d)

Patterns an empty set
for each k-mer Pattern in Dna

for each k-mer Pattern’ differing from Pattern by at most d mismatches
if Pattern’ appears in each string from Dna with at most d mismatches

add Pattern’ to Patterns
remove duplicates from Patterns
return Patterns

2A

MOTIFENUMERATION is unfortunately rather slow for large values of k and d, and so
we will try a different approach instead. Maybe we can detect an implanted pattern sim-
ply by identifying the two most similar k-mers between each pair of strings in Dna? How-
ever, consider the implanted 15-mers AgAAgAAAGGttGGG and cAAtAAAAcGGGGcG,
each of which differs from AAAAAAAAGGGGGGG by four mismatches. Although these
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15-mers look similar to the correct motif AAAAAAAAGGGGGGG, they are not so similar
when compared to each other, having eight mismatches:

AgAAgAAAGGttGGG
|| || | || |
cAAtAAAAcGGGGcG

Since these two implanted patterns are so different, we should be concerned whether
we will be able to find them by searching for the most similar k-mers among pairs of
strings in Dna.

In the rest of the chapter, we will benchmark our motif finding algorithms by using
a particularly challenging instance of the Implanted Motif Problem. The Subtle Motif
Problem refers to implanting a 15-mer with four random mutations in ten randomly
generated 600 nucleotide-long strings (the typical length of many upstream regulatory
regions). The instance of the Subtle Motif Problem that we will use has the implanted
15-mer AAAAAAAAGGGGGGG.

It turns out that thousands of pairs of randomly occurring 15-mers in our dataset for
the Subtle Motif Problem are fewer than 8 nucleotides apart from each other, preventing
us from identifying the true implanted motifs by pairwise comparisons.

Scoring Motifs

From motifs to profile matrices and consensus strings

Although the Implanted Motif Problem offers a useful abstraction of the biological
problem of motif finding, it has some limitations. For example, when Steve Kay used
a DNA array to infer the set of circadian genes in plants, he did not expect that all
genes in the resulting set would have the evening element (or its variants) in their
upstream regions. Similarly, biologists do not expect that all genes with an elevated
expression level in infected flies must be regulated by NF-kB. DNA array experiments
are inherently noisy, and some genes identified by these experiments have nothing to
do with the circadian clock in plants or immunity genes in flies. For such noisy datasets,
any algorithm for the Implanted Motif Problem would fail, because as long as a single
sequence does not contain the transcription factor binding site, a (k, d)-motif does not
exist!

A more appropriate problem formulation would score individual instances of motifs
depending on how similar they are to an “ideal” motif (i.e., a transcription factor
binding site that binds the best to the transcription factor). However, since the ideal
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motif is unknown, we attempt to select a k-mer from each string and score these k-mers
depending on how similar they are to each other.

To define scoring, consider t DNA strings, each of length n, and select a k-mer from
each string to form a collection Motifs, which we represent as a t⇥ k motif matrix. In
Figure 2.2, which shows the motif matrix for the NF-kB binding sites from Figure 2.1, we
indicate the most frequent nucleotide in each column of the motif matrix by upper case
letters. If there are multiple most popular nucleotides in a column, then we arbitrarily
select one of them to break the tie. Note that positions 2 and 3 are the most conserved
(nucleotide G is completely conserved in these positions), whereas position 10 is the
least conserved.

By varying the choice of k-mers in each string, we can construct a large number
of different motif matrices from a given sample of DNA strings. Our goal is to select
k-mers resulting in the most “conserved” motif matrix, meaning the matrix with the
most upper case letters (and thus the fewest number of lower case letters). Leaving
aside the question of how we select such k-mers, we will first focus on how to score the
resulting motif matrices, defining SCORE(Motifs) as the number of unpopular (lower
case) letters in the motif matrix Motifs. Our goal is to find a collection of k-mers that
minimizes this score.

EXERCISE BREAK: The minimum possible value of SCORE(Motifs) is 0 (if all
rows in the t⇥ k matrix Motifs are the same). What is the maximum possible
value of SCORE(Motifs) in terms of t and k?

We can construct the 4⇥ k count matrix COUNT(Motifs) counting the number of oc-
currences of each nucleotide in each column of the motif matrix; the (i, j)-th element
of COUNT(Motifs) stores the number of times that nucleotide i appears in column j of
Motifs. We will further divide all of the elements in the count matrix by t, the number
of rows in Motifs. This results in a profile matrix P = PROFILE(Motifs) for which Pi,j is
the frequency of the i-th nucleotide in the j-th column of the motif matrix. Note that the
elements of any column of the profile matrix sum to 1.

Finally, we form a consensus string, denoted CONSENSUS(Motifs), from the most
popular nucleotides in each column of the motif matrix (ties are broken arbitrarily). If we
select Motifs correctly from the collection of upstream regions, then CONSENSUS(Motifs)
provides an ideal candidate regulatory motif for these regions. For example, the consen-
sus string for the NF-kB binding sites in Figure 2.2 is TCGGGGATTTCC.
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Motifs

T C G G G G a T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

73



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Towards a more adequate motif scoring function

Consider the second column (containing 6 C, 2 A, and 2 T) and the final column (contain-
ing 6 C and 4 T) in the motif matrix from Figure 2.2. Both of these columns contribute 4
to SCORE(Motifs).

STOP and Think: Does scoring these two columns equally make sense biologi-
cally?

For many biological motifs, certain positions feature two nucleotides with roughly the
same ability to bind to a transcription factor. For example, the sixteen nucleotide-long
CSRE transcription factor binding site in the yeast S. cerevisiae consists of five strongly
conserved positions in addition to eleven weakly conserved positions, each of which
features two nucleotides with similar frequencies (see Figure 2.3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C G/C G/T T/A C/T G/C C/G A T G/T C/G A T C/T C/T G/T

FIGURE 2.3 The CSRE transcription factor binding site in S. cerevisiae is 16 nucleotides
long, but only five of these positions (1, 8, 9, 12, 13) are strongly conserved. The
remaining 11 positions can take one of two different nucleotides.

Following this example, a more appropriate representation of the consensus string
TCGGGGATTTCC for the NF-kB binding sites should include viable alternatives to the
most popular nucleotides in each column (see Figure 2.4). In this sense, the last column
(6 C, 4 T) in the motif matrix from Figure 2.2 is “more conserved” than the second
column (6 C, 2 A, 2 T) and should receive a lower score.

1 2 3 4 5 6 7 8 9 10 11 12
T C G G G G A T/C T T C C/T

FIGURE 2.4 Taking nucleotides in each column of the NF-kB binding site motif matrix
from Figure 2.2 with frequency at least 0.4 yields a representation of the NF-kB binding
sites with ten strongly conserved positions and two weakly conserved positions (8 and
12).
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Entropy and the motif logo

Every column of PROFILE(Motifs) corresponds to a probability distribution, or a col-
lection of nonnegative numbers that sum to 1. For example, the second column in
Figure 2.2 corresponds to the probabilities 0.2, 0.6, 0.0, and 0.2 for A, C, G, and T,
respectively.

Entropy is a measure of the uncertainty of a probability distribution (p1, . . . , pN),
and is defined as

H(p1, . . . , pN) = �
N
Â

i=1
pi · log2 (pi) .

For example, the entropy of the probability distribution (0.2, 0.6, 0.0, 0.2) corresponding
to the second column of the profile matrix in Figure 2.2 is

�(0.2 log2 0.2 + 0.6 log2 0.6 + 0.0 log2 0.0 + 0.2 log2 0.2) ⇡ 1.371 ,

whereas the entropy of the more conserved final column (0.0, 0.6, 0.0, 0.4) is

�(0.0 log2 0.0 + 0.6 log2 0.6 + 0.0 log2 0.0 + 0.4 log2 0.4) ⇡ 0.971 ,

and the entropy of the very conserved 5th column (0.0, 0.0, 0.9, 0.1) is

�(0.0 log2 0.0 + 0.0 log2 0.0 + 0.9 log2 0.9 + 0.1 log2 0.1) ⇡ 0.467 .

Note that technically, log2 0 is not defined, but in the computation of entropy, we assume
that 0 · log2 0 is equal to 0.

STOP and Think: What are the maximum and minimum possible values for the
entropy of a probability distribution containing four values?

The entropy of the completely conserved third column of the profile matrix in Fig-
ure 2.2 is 0, which is the minimum possible entropy. On the other hand, a column
with equally-likely nucleotides (all probabilities equal to 1/4) has maximum possible
entropy �4 · 1/4 · log2 (1/4) = 2. In general, the more conserved the column, the
smaller its entropy. Thus, entropy offers an improved method of scoring motif matrices:
the entropy of a motif matrix is defined as the sum of the entropies of its columns. In
this book, we will continue to use SCORE(Motifs) for simplicity, but the entropy score is
used more often in practice.
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EXERCISE BREAK: Compute the entropy of the NF-kB motif matrix from Fig-
ure 2.2.

Another application of entropy is the motif logo, a diagram for visualizing motif con-
servation that consists of a stack of letters at each position (see the bottom of Figure 2.2).
The relative sizes of letters indicate their frequency in the column. The total height of
the letters in each column is based on the information content of the column, which is
defined as 2�H(p1, . . . , pN). The lower the entropy, the higher the information content,
meaning that tall columns in the motif logo are highly conserved.

From Motif Finding to Finding a Median String

The Motif Finding Problem

Now that we have a good grasp of scoring a collection of k-mers, we are ready to
formulate the Motif Finding Problem.

Motif Finding Problem:
Given a collection of strings, find a set of k-mers, one from each string, that minimizes
the score of the resulting motif.

Input: A collection of strings Dna and an integer k.
Output: A collection Motifs of k-mers, one from each string in Dna, minimiz-
ing SCORE(Motifs) among all possible choices of k-mers.

A brute force algorithm for the Motif Finding Problem, BRUTEFORCEMOTIFSEARCH,
considers every possible choice of k-mers Motifs from Dna (one k-mer from each string
of n nucleotides) and returns the collection Motifs having minimum score. Because there
are n� k+ 1 choices of k-mers in each of t sequences, there are (n� k+ 1)t different ways
to form Motifs. For each choice of Motifs, the algorithm calculates SCORE(Motifs), which
requires k · t steps. Thus, assuming that k is much smaller than n, the overall running
time of the algorithm is O�

nt · k · t
�
. We need to come up with a faster algorithm!

Reformulating the Motif Finding Problem

Because BRUTEFORCEMOTIFSEARCH is inefficient, we will think about motif finding
in a different way. Instead of exploring all Motifs in Dna and deriving the consensus
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string from Motifs afterwards,

Motifs! CONSENSUS(Motifs) ,

we will explore all potential k-mer consensus strings first and then find the best possible
collection Motifs for each consensus string,

CONSENSUS(Motifs)!Motifs .

To reformulate the Motif Finding Problem, we need to devise an alternative way of
computing SCORE(Motifs). Until now, we have computed SCORE(Motifs), the number
of lower case letters in the motif matrix, column-by-column. For example, in Figure 2.2,
we computed SCORE(Motifs) for the NF-kB motif matrix as

3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30 .

Figure 2.5 illustrates that SCORE(Motifs) can just as easily be computed row-by-row as

3 + 4 + 2 + 4 + 3 + 2 + 3 + 2 + 4 + 3 = 30 .

Note that each element in the latter sum represents the number of mismatches between
the consensus string TCGGGGATTTCC and a motif in the corresponding row of the motif
matrix, i.e., the Hamming distance between these strings. For the first row of the motif
matrix in Figure 2.5, d(TCGGGGATTTCC,TCGGGGgTTTtt) = 3.

Given a collection of k-mers Motifs = {Motif1, ..., Motift} and a k-mer Pattern, we
now define d(Pattern, Motifs) as the sum of Hamming distances between Pattern and
each Motifi,

d(Pattern, Motifs) =
t

Â
i=1

HAMMINGDISTANCE(Pattern, Motifi) .

Because SCORE(Motifs) corresponds to counting the lower case elements of Motifs
column-by-column and d(CONSENSUS(Motifs), Motifs) corresponds to counting these
elements row-by-row, we obtain that

SCORE(Motifs) = d(CONSENSUS(Motifs), Motifs) .
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Motifs

T C G G G G g T T T t t 3
c C G G t G A c T T a C 4
a C G G G G A T T T t C 2
T t G G G G A c T T t t 4
a a G G G G A c T T C C 3
T t G G G G A c T T C C 2
T C G G G G A T T c a t 3
T C G G G G A T T c C t 2
T a G G G G A a c T a C 4
T C G G G t A T a a C C + 3

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

CONSENSUS(Motifs) T C G G G G A T T T C C

FIGURE 2.5 The motif and score matrices in addition to the consensus string for the
NF-kB binding sites, reproduced from Figure 2.2. Rather than add the non-consensus
elements (i.e., lower case nucleotides) column-by-column, we can add them row-by-
row, as highlighted on the right of the motifs matrix. Each value at the end of a row
corresponds to the Hamming distance between that row and the consensus string.

This equation gives us an idea. Instead of searching for a collection of k-mers Motifs
minimizing SCORE(Motifs), let’s instead search for a potential consensus string Pattern
minimizing d(Pattern, Motifs) among all possible k-mers Pattern and all possible choices
of k-mers Motifs in Dna. This problem is equivalent to the Motif Finding Problem.

Equivalent Motif Finding Problem:
Given a collection of strings, find a pattern and a collection of k-mers (one from each string)
that minimizes the distance between all possible patterns and all possible collections of
k-mers.

Input: A collection of strings Dna and an integer k.
Output: A k-mer Pattern and a collection of k-mers Motifs, one from each
string in Dna, minimizing d(Pattern, Motifs) among all possible choices of
Pattern and Motifs.
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The Median String Problem

But wait a second — have we not just made our task more difficult? Instead of having
to search for all Motifs, we now have to search all Motifs as well as all k-mers Pattern.
The key observation for solving the Equivalent Motif Finding Problem is that, given
Pattern, we don’t need to explore all possible collections Motifs in order to minimize
d(Pattern, Motifs).

To explain how this can be done, we define MOTIFS(Pattern, Dna) as a collection
of k-mers that minimizes d(Pattern, Motifs) for a given Pattern and all possible sets of
k-mers Motifs in Dna. For example, for the strings Dna shown below, the five colored
3-mers represent MOTIFS(AAA, Dna).

ttaccttAAC
gATAtctgtc

Dna ACGgcgttcg
ccctAAAgag
cgtcAGAggt

STOP and Think: Given a collection of strings Dna and a k-mer Pattern, design a
fast algorithm for generating MOTIFS(Pattern, Dna).

The reason why we don’t need to consider all possible collections Motifs in Dna =

{Dna1, ..., Dnat} is that we can generate the k-mers in MOTIFS(Pattern, Dna) one at a
time; that is, we can select a k-mer in Dnai independently of selecting k-mers in all other
strings in Dna. Given a k-mer Pattern and a longer string Text, we use d(Pattern, Text) to
denote the minimum Hamming distance between Pattern and any k-mer in Text,

d(Pattern, Text) = min
all k-mers Pattern’ in Text

HAMMINGDISTANCE(Pattern, Pattern’) .

For example,

d(GATTCTCA,gcaaaGACGCTGAccaa) = 3 .

A k-mer in Text that achieves the minimum Hamming distance with Pattern is denoted
MOTIF(Pattern, Text). For the above example,

MOTIF(GATTCTCA,gcaaaGACGCTGAccaa) = GACGCTGA .

79



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

We note that the notation MOTIF(Pattern, Text) is ambiguous because there may be
multiple k-mers in Text that achieve the minimum Hamming distance with Pattern. For
example, MOTIF(AAG,gcAATcctCAGc) could be either AAT or CAG. However, this
ambiguity does not affect the following analysis.

Given a k-mer Pattern and a set of strings Dna = {Dna1, ..., Dnat}, we define
d(Pattern, Dna) as the sum of distances between Pattern and all strings in Dna,

d(Pattern, Dna) =
t

Â
i=1

d(Pattern, Dnai).

For example, for the strings Dna shown below, d(AAA, Dna) = 1 + 1 + 2 + 0 + 1 = 5 .

ttaccttAAC 1
gATAtctgtc 1

Dna ACGgcgttcg 2
ccctAAAgag 0
cgtcAGAggt 1

Our goal is to find a k-mer Pattern that minimizes d(Pattern, Dna) over all k-mers Pattern,
the same task that the Equivalent Motif Finding Problem is trying to achieve. We call
such a k-mer a median string for Dna.

Median String Problem:
Find a median string.

Input: A collection of strings Dna and an integer k.
Output: A k-mer Pattern minimizing d(Pattern, Dna) among all k-mers Pat-
tern.

2B

Notice that finding a median string requires solving a double minimization problem.
We must find a k-mer Pattern that minimizes d(Pattern, Dna), where this function is
itself computed by taking a minimum over all choices of k-mers from each string in Dna.
The pseudocode for a brute-force algorithm, MEDIANSTRING, is given below.
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MEDIANSTRING(Dna, k)
distance 1
for each k-mer Pattern from AA...AA to TT...TT

if distance > d(Pattern,Dna)
distance d(Pattern,Dna)
Median Pattern

return Median

CHARGING STATION (Solving the Median String Problem): Although this
pseudocode is short, it is not without potential pitfalls. Check out this Charging
Station if you fall into one of them. PAGE

106

STOP and Think: Instead of making a time-consuming search through all pos-
sible k-mers in MEDIANSTRING, can you only search through all k-mers that
appear in Dna?

Why have we reformulated the Motif Finding Problem?

To see why we reformulated the Motif Finding Problem as the equivalent Median String
Problem, consider the runtimes of MEDIANSTRING and BRUTEFORCEMOTIFS. The
former algorithm computes d(Pattern, Dna) for each of the 4k k-mers Pattern. Each
computation of d(Pattern, Dna) requires a single pass over each string in Dna, which
requires approximately k · n · t operations for t strings of length n in Dna. Therefore,
MEDIANSTRING has a running time of O

⇣
4k · n · k · t

⌘
, which in practice compares

favorably with the O�
nt · k · t

�
running time of BRUTEFORCEMOTIFSEARCH because

the length of a motif (k) typically does not exceed 20 nucleotides, whereas t is measured
in the thousands.

The Median String Problem teaches an important lesson, which is that sometimes
rethinking how a problem is formulated can lead to dramatic improvements in the
runtime required to solve it. In this case, our simple observation that SCORE(Motifs)
could just as easily be computed row-by-row as column-by-column produced the faster
MEDIANSTRING algorithm.

Of course, the ultimate test of a bioinformatics algorithm is how it performs in
practice. Unfortunately, since MEDIANSTRING has to consider 4k k-mers, it becomes
too slow for the Subtle Motif Problem, for which k = 15. We will run MEDIANSTRING
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with k = 13 in the hope that it will capture a substring of the correct 15-mer motif. The
algorithm still requires half a day to run on our computer and returns the median string
AAAAAtAGaGGGG (with distance 29). This 13-mer is not a substring of the implanted
pattern AAAAAAAAGGGGGGG, but it does come close.

STOP and Think: How can a slightly incorrect median string of length 13 help
us find the correct median string of length 15?

We have thus far assumed that the value of k is known in advance, which is not the case
in practice. As a result, we are forced to run our motif finding algorithms for different
values of k and then try to deduce the correct motif length. Since some regulatory motifs
are rather long — later in the chapter, we will search for a biologically important motif
of length 20 — MEDIANSTRING may be too slow to find them.

Greedy Motif Search

Using the profile matrix to roll dice

Many algorithms are iterative procedures that must choose among many alternatives at
each iteration. Some of these alternatives may lead to correct solutions, whereas others
may not. Greedy algorithms select the “most attractive” alternative at each iteration.
For example, a greedy algorithm in chess might attempt to capture an opponent’s most
valuable piece at every move. Yet anyone who has played chess knows that this strategy
of looking only one move ahead will likely produce disastrous results. In general, most
greedy algorithms typically fail to find an exact solution of the problem; instead, they
are often fast heuristics that trade accuracy for speed in order to find an approximate
solution. Nevertheless, for many biological problems that we will study in this book,
greedy algorithms will prove quite useful.

In this section, we will explore a greedy approach to motif finding. Again, let Motifs
be a collection of k-mers taken from t strings Dna. Recall from our discussion of entropy
that we can view each column of PROFILE(Motifs) as a four-sided biased die. Thus, a
profile matrix with k columns can be viewed as a collection of k dice, which we will roll
to randomly generate a k-mer. For example, if the first column of the profile matrix is
(0.2, 0.1, 0.0, 0.7), then we generate A as the first nucleotide with probability 0.2, C with
probability 0.1, G with probability 0.0, and T with probability 0.7.

In Figure 2.6, we reproduce the profile matrix for the NF-kB binding sites from
Figure 2.2, where the lone colored entry in the i-th column corresponds to the i-th
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nucleotide in ACGGGGATTACC. The probability Pr(ACGGGGATTACC|Profile) that Profile
generates ACGGGGATTACC is computed by simply multiplying the highlighted entries
in the profile matrix.

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(ACGGGGATTACC|Profile) = .2 · .6 ·1 ·1 · .9 · .9 · .9 · .5 · .8 · .1 · .4 · .6 = 0.000839808

FIGURE 2.6 We can generate a random string based on a profile matrix by selecting
the i -th nucleotide in the string with the probability corresponding to that nucleotide in
the i -th column of the profile matrix. The probability that a profile matrix will produce
a given string is given by the product of individual nucleotide probabilities.

A k-mer tends to have a higher probability when it is more similar to the consensus
string of a profile. For example, for the NF-kB profile matrix shown in Figure 2.6 and its
consensus string TCGGGGATTTCC,

Pr(TCGGGGATTTCC|Profile) = 0.7 · 0.6 · 1.0 · 1.0 · 0.9 · 0.9 · 0.9 · 0.5 · 0.8 · 0.7 · 0.4 · 0.6

= 0.0205753 ,

which is larger than the value of Pr(ACGGGGATTACC|Profile) = 0.000839808 that we
computed in Figure 2.6.

EXERCISE BREAK: Compute Pr(TCGTGGATTTCC|Profile), where Profile is the
matrix shown in Figure 2.6.

Given a profile matrix Profile, we can evaluate the probability of every k-mer in a string
Text and find a Profile-most probable k-mer in Text, i.e., a k-mer that was most likely to
have been generated by Profile among all k-mers in Text. For the NF-kB profile matrix,
ACGGGGATTACC is the Profile-most probable 12-mer in ggtACGGGGATTACCt. Indeed,
every other 12-mer in this string has probability 0. In general, if there are multiple
Profile-most probable k-mers in Text, then we select the first such k-mer occurring in
Text.
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Profile-most Probable k-mer Problem:
Find a Profile-most probable k-mer in a string.

Input: A string Text, an integer k, and a 4⇥ k matrix Profile.
Output: A Profile-most probable k-mer in Text.

2C

Our proposed greedy motif search algorithm, GREEDYMOTIFSEARCH, tries each of
the k-mers in Dna1 as the first motif. For a given choice of k-mer Motifi in Dna1, it
then builds a profile matrix Profile for this lone k-mer, and sets Motif2 equal to the
Profile-most probable k-mer in Dna2. It then iterates by updating Profile as the profile
matrix formed from Motif1 and Motif2, and sets Motif2 equal to the Profile-most probable
k-mer in Dna3. In general, after finding i � 1 k-mers Motifs in the first i � 1 strings
of Dna, GREEDYMOTIFSEARCH constructs Profile(Motifs) and selects the Profile-most
probable k-mer from Dnai based on this profile matrix. After obtaining a k-mer from
each string to obtain a collection Motifs, GREEDYMOTIFSEARCH tests to see whether
Motifs outscores the current best scoring collection of motifs and then moves Motif1 one
symbol over in Dna1, beginning the entire process of generating Motifs again.

GREEDYMOTIFSEARCH(Dna, k, t)
BestMotifs motif matrix formed by first k-mers in each string from Dna
for each k-mer Motif in the first string from Dna

Motif1  Motif
for i = 2 to t

form Profile from motifs Motif1, ..., Motifi�1
Motifi  Profile-most probable k-mer in the i-th string in Dna

Motifs (Motif1, ..., Motift)
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2D

If you are not satisfied with the performance of GREEDYMOTIFSEARCH — even if you
implemented it correctly — then wait until we discuss this algorithm in the next section.

Analyzing greedy motif finding

In contrast to MEDIANSTRING, GREEDYMOTIFSEARCH is fast and can be run with
k = 15 to solve the Subtle Motif Problem (recall that we settled for k = 13 in the
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case of MEDIANSTRING). However, it trades speed for accuracy and returns the 15-
mer gtAAAtAgaGatGtG (total distance: 58), which is very different from the true
implanted motif AAAAAAAAGGGGGGG.

STOP and Think: Why does GREEDYMOTIFSEARCH perform so poorly?

At first glance, GREEDYMOTIFSEARCH may seem like a reasonable algorithm, but
it is not! Let’s see whether GREEDYMOTIFSEARCH will find the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc
acgGCGTtag
ccctaACGAg
cgtcagAGGT

We will assume that the algorithm has already correctly chosen the implanted 4-mer
ACCT from the first string in Dna and constructed the corresponding Profile:

A: 1 0 0 0
C: 0 1 1 0
G: 0 0 0 0
T: 0 0 0 1

The algorithm is now ready to search for a Profile-most probable 4-mer in the second
sequence. The issue, however, is that there are so many zeros in the profile matrix that
the probability of every 4-mer but ACCT is zero! Thus, unless ACCT is present in every
string in Dna, there is little chance that GREEDYMOTIFSEARCH will find the implanted
motif. Zeroes in the profile matrix are not just a minor annoyance but rather a persistent
problem that we must address.

Motif Finding Meets Oliver Cromwell

What is the probability that the sun will not rise tomorrow?

In 1650, after the Scots proclaimed Charles II as king during the English Civil War,
Oliver Cromwell made a famous appeal to the Church of Scotland. Urging them to see
the error of their royal alliance, he pleaded,
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I beseech you, in the bowels of Christ, think it possible that you may be mistaken.

The Scots rejected the appeal, and Cromwell invaded Scotland in response. His quota-
tion later inspired the statistical maxim called Cromwell’s rule, which states that we
should not use probabilities of 0 or 1 unless we are talking about logical statements
that can only be true or false. In other words, we should allow a small probability for
extremely unlikely events, such as “this book was written by aliens” or “the sun will
not rise tomorrow”. We cannot speak to the likelihood of the former event, but in the
18th Century, the French mathematician Pierre-Simon Laplace actually estimated the
probability that the sun will not rise tomorrow (1/1826251), given that it has risen every
day for the past 5000 years. Although this estimate was ridiculed by his contemporaries,
Laplace’s approach to this question now plays an important role in statistics.

In any observed data set, there is the possibility, especially with low-probability
events or small data sets, that an event with nonzero probability does not occur. Its
observed frequency is therefore zero; however, setting the empirical probability of the
event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which is very different from the con-
sensus string.

In order to improve this unfair scoring, bioinformaticians often substitute zeroes
with small numbers called pseudocounts. The simplest approach to introducing pseu-
docounts, called Laplace’s Rule of Succession, is similar to the principle that Laplace
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used to calculate the probability that the sun will not rise tomorrow. In the case of
motifs, pseudocounts often amount to adding 1 (or some other small number) to each
element of COUNT(Motifs). For example, say that we have the following motif, count,
and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

Laplace’s Rule of Succession adds 1 to each element of COUNT(Motifs), updating the
two matrices to the following:

COUNT(Motifs)

A: 2+1 1+1 1+1 1+1

PROFILE(Motifs)

3/8 2/8 2/8 2/8
C: 0+1 1+1 1+1 1+1 1/8 2/8 2/8 2/8
G: 1+1 1+1 1+1 0+1 2/8 2/8 2/8 1/8
T: 1+1 1+1 1+1 2+1 2/8 2/8 2/8 3/8

STOP and Think: How would you use Laplace’s Rule of Succession to address
the shortcomings of GREEDYMOTIFSEARCH?

An improved greedy motif search

The only change we need to introduce to GREEDYMOTIFSEARCH in order to eliminate
zeroes from the profile matrices that it constructs is to replace line 6 of the pseudocode
for GREEDYMOTIFSEARCH:

form Profile from motifs Motif1, ... Motifi�1

with the following line:
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apply Laplace’s Rule of Succession to form Profile from motifs Motif1, ... Motifi�1

We now will apply Laplace’s Rule of Succession to search for the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc

Dna acgGCGTtag
ccctaACGAg
cgtcagAGGT

Again, let’s assume that the algorithm has already chosen the implanted 4-mer ACCT
from the first sequence. We can construct the corresponding count and profile matrices
using Laplace’s Rule of Succession:

Motifs ACCT

COUNT(Motifs)

A: 1+1 0+1 0+1 0+1

PROFILE(Motifs)

2/5 1/5 1/5 1/5
C: 0+1 1+1 1+1 0+1 1/5 2/5 2/5 1/5
G: 0+1 0+1 0+1 0+1 1/5 1/5 1/5 1/5
T: 0+1 0+1 0+1 1+1 1/5 1/5 1/5 2/5

We use this profile matrix to compute the probabilities of all 4-mers in the second string
from Dna:

gATG ATGT TGTc GTct Tctg ctgt tgtc
1/54 4/54 1/54 4/54 2/54 2/54 1/54

There are two Profile-most probable 4-mers in the second sequence (ATGT and GTct);
let’s assume that we get lucky again and choose the implanted 4-mer ATGT. We now
have the following motif, count, and profile matrices:

Motifs
ACCT
ATGT

COUNT(Motifs)

A: 2+1 0+1 0+1 0+1

PROFILE(Motifs)

3/6 1/6 1/6 1/6
C: 0+1 1+1 1+1 0+1 1/6 2/6 2/6 1/6
G: 0+1 0+1 1+1 0+1 1/6 1/6 2/6 1/6
T: 0+1 1+1 0+1 2+1 1/6 2/6 1/6 3/6
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We use this profile matrix to compute the probabilities of all 4-mers in the third string
from Dna:

acgG cgGC gGCG GCGT CGTt GTta Ttag
12/64 2/64 2/64 12/64 3/64 2/64 2/64

Again, there are two Profile-most probable 4-mers in the second sequence (acgG and
GCGT). This time, we will assume that acgG is selected instead of the implanted 4-mer
GCGT. We now have the following motif, count, and profile matrices:

Motifs
ACCT
ATGT
acgG

COUNT(Motifs)

A: 3+1 0+1 0+1 1+1

PROFILE(Motifs)

4/7 1/7 1/7 1/7
C: 0+1 2+1 1+1 0+1 1/7 3/7 2/7 1/7
G: 0+1 0+1 2+1 1+1 1/7 1/7 3/7 2/7
T: 0+1 1+1 0+1 2+1 1/7 2/7 1/7 3/7

We use this profile matrix to compute probabilities of all 4-mers in the fourth string
from Dna:

ccct ccta ctaA taAC aACG ACGA CGAg
18/74 3/74 2/74 1/74 16/74 36/74 2/74

Despite the fact that we missed the implanted 4-mer in the third sequence, we have
now found the implanted 4-mer in the fourth string in Dna as the Profile-most probable
4-mer ACGA. This provides us with the following motif, count, and profile matrices:

Motifs

ACCT
ATGT
acgG
ACGA

COUNT(Motifs)

A: 4+1 0+1 0+1 0+1

PROFILE(Motifs)

5/8 1/8 1/8 2/8
C: 0+1 3+1 1+1 0+1 1/8 4/8 2/8 1/8
G: 0+1 0+1 3+1 1+1 1/8 1/8 4/8 2/8
T: 0+1 1+1 0+1 2+1 1/8 2/8 1/8 3/8

We now use this profile to compute the probabilities of all 4-mers in the fifth string in
Dna:
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cgtc gtca tcag cagA agAG gAGG AGGT
1/84 8/84 8/84 8/84 10/84 8/84 60/84

The Profile-most probable 4-mer of the fifth string in Dna is AGGT, the implanted 4-mer.
As a result, GREEDYMOTIFSEARCH has produced the following motif matrix, which
implies the correct consensus string ACGT:

Motifs

ACCT
ATGT
acgG
ACGA
AGGT

CONSENSUS(Motifs) ACGT

You have now seen the power of pseudocounts illustrated on a small example.
Running GREEDYMOTIFSEARCH with pseudocounts to solve the Subtle Motif Problem
returns a collection of 15-mers Motifs with SCORE(Motifs) = 41 and CONSENSUS(Motifs)
= AAAAAtAgaGGGGtt. Thus, Laplace’s Rule of Succession has provided a significant
improvement over the original GREEDYMOTIFSEARCH, which returned the consensus
string gTtAAAtAgaGatGtG with SCORE(Motifs) = 58.

2E

You may be satisfied with the performance of GREEDYMOTIFSEARCH, but you
should know by now that your authors are never satisfied. Can we design an even
more accurate motif finding algorithm?

Randomized Motif Search

Rolling dice to find motifs

We will now turn to randomized algorithms that flip coins and roll dice in order to
search for motifs. Making random algorithmic decisions may sound like a disastrous
idea — just imagine a chess game in which every move would be decided by rolling a
die. However, an 18th Century French mathematician and naturalist, Comte de Buffon,
first proved that randomized algorithms are useful by randomly dropping needles
onto parallel strips of wood and using the results of this experiment to accurately
approximate the constant p (see DETOUR: Buffon’s Needle). PAGE 108

Randomized algorithms may be nonintuitive because they lack the control of tra-
ditional algorithms. Some randomized algorithms are Las Vegas algorithms, which
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deliver solutions that are guaranteed to be exact, despite the fact that they rely on mak-
ing random decisions. Yet most randomized algorithms, including the motif finding
algorithms that we will consider in this chapter, are Monte Carlo algorithms. These
algorithms are not guaranteed to return exact solutions, but they do quickly find ap-
proximate solutions. Because of their speed, they can be run many times, allowing us to
choose the best approximation from thousands of runs.

We previously defined PROFILE(Motifs) as the profile matrix constructed from a
collection of k-mers Motifs in Dna. Now, given a collection of strings Dna and an
arbitrary 4⇥ k matrix Profile, we define MOTIFS(Profile, Dna) as the collection of k-mers
formed by the Profile-most probable k-mers in each sequence from Dna. For example,
consider the following Profile and Dna:

Profile

A: 4/5 0 0 1/5

Dna

ttaccttaac
C: 0 3/5 1/5 0 gatgtctgtc
G: 1/5 1/5 4/5 0 acggcgttag
T: 0 1/5 0 4/5 ccctaacgag

cgtcagaggt

Taking the Profile-most probable 4-mer from each row of Dna produces the following
4-mers (shown in red):

ttaccttaac
gatgtctgtc

MOTIFS(Profile, Dna) acggcgttag
ccctaacgag
cgtcagaggt

In general, we can begin from a collection of randomly chosen k-mers Motifs in Dna,
construct PROFILE(Motifs), and use this profile to generate a new collection of k-mers:

MOTIFS(PROFILE(Motifs),Dna)

Why would we do this? Because our hope is that MOTIFS(PROFILE(Motifs), Dna) has a
better score than the original collection of k-mers Motifs. We can then form the profile
matrix of these k-mers,

PROFILE(MOTIFS(PROFILE(Motifs), Dna)) ,

and use it to form the most probable k-mers,
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MOTIFS(PROFILE(MOTIFS(PROFILE(Motifs), Dna)), Dna) .

We can continue to iterate. . .

. . . PROFILE(MOTIFS(PROFILE(MOTIFS(PROFILE(Motifs), Dna)), Dna)). . .

for as long as the score of the constructed motifs keeps improving, which is exactly what
RANDOMIZEDMOTIFSEARCH does. To implement this algorithm, you will need to
randomly select the initial collection of k-mers that form the motif matrix Motifs. To do
so, you will need a random number generator (denoted RANDOM(N)) that is equally
likely to return any integer from 1 to N. You might like to think about this random
number generator as an unbiased N-sided die.

RANDOMIZEDMOTIFSEARCH(Dna, k, t)
randomly select k -mers Motifs = (Motif1, . . . ,Motift) in each string from Dna
BestMotifs Motifs
while forever

Profile PROFILE(Motifs)
Motifs MOTIFS(Profile,Dna)
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
else

return BestMotifs

2F

EXERCISE BREAK: Prove that RANDOMIZEDMOTIFSEARCH will eventually
terminate.

Since a single run of RANDOMIZEDMOTIFSEARCH may generate a rather poor set of
motifs, bioinformaticians usually run this algorithm thousands of times. On each run,
they begin from a new randomly selected set of k-mers, selecting the best set of k-mers
found in all these runs.

Why randomized motif search works

At first glance, RANDOMIZEDMOTIFSEARCH appears to be doomed. How can this
algorithm, which starts from a random guess, possibly find anything useful? To explore
RANDOMIZEDMOTIFSEARCH, let’s run it on five short strings with the implanted
(4, 1)-motif ACGT (shown in upper case letters below) and imagine that it chooses the
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following 4-mers Motifs (shown in red) at the first iteration. As expected, it misses the
implanted motif in nearly every string.

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!
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ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosen k-mers have led us to
the correct implanted k-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.
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STOP and Think: Does your run of RANDOMIZEDMOTIFSEARCH re-
turn a similar consensus string? How many times do you need to run
RANDOMIZEDMOTIFSEARCH to obtain the implanted (15, 4)-motif with dis-
tance 40?

Although the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, RANDOMIZEDMOTIFSEARCH

has the advantage of being able to find longer motifs (since MEDIANSTRING becomes
too slow for longer motifs). In the epilogue, we will see that this feature is important in
practice.

How Can a Randomized Algorithm Perform So Well?

In the previous section, we began with a collection of implanted motifs that resulted in
the following profile matrix.

A: 0.8 0.0 0.0 0.2
C: 0.0 0.6 0.2 0.0
G: 0.2 0.2 0.8 0.0
T: 0.0 0.2 0.0 0.8

If the strings in Dna were truly random, then we would expect that all nucleotides
in the selected k-mers would be equally likely, resulting in an expected Profile in which
every entry is approximately 0.25:

A: 0.25 0.25 0.25 0.25
C: 0.25 0.25 0.25 0.25
G: 0.25 0.25 0.25 0.25
T: 0.25 0.25 0.25 0.25

Such a uniform profile is essentially useless for motif finding because no string is more
probable than any other according to this profile and because it does not provide any
clues on what an implanted motif looks like.

At the opposite end of the spectrum, if we were incredibly lucky, we would choose
the implanted k-mers Motifs from the very beginning, resulting in the first of the two
profile matrices above. In practice, we are likely to obtain a profile somewhere in
between these two extremes, such as the following:
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A: 0.4 0.2 0.2 0.2
C: 0.2 0.4 0.2 0.2
G: 0.2 0.2 0.4 0.2
T: 0.2 0.2 0.2 0.4

This profile matrix has already started to point us toward the implanted motif ACGT,
i.e., ACGT is the most likely 4-mer that can be generated by this profile. Fortunately,
RANDOMIZEDMOTIFSEARCH is designed so that subsequent steps have a good chance
of leading us toward this implanted motif (although it is not certain).

If you still doubt the efficacy of randomized algorithms, consider the following
argument. We have already noticed that if the strings in Dna were random, then
RANDOMIZEDMOTIFSEARCH would start from a nearly uniform profile, and there
would be nothing to work with. However, the key observation is that the strings in Dna
are not random because they include the implanted motif! These multiple occurrences
of the same motif may create a bias in the profile matrix, directing it away from the
uniform profile and toward the implanted motif. For example, consider again the
original randomly selected k-mers Motifs (shown in red):

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You will see that the 4-mer AGGT in the last string happened to capture the implanted
motif simply by chance. In fact, the profile formed from the remaining 4-mers (taac,
GTct, ccgG, and acta) is uniform.

EXERCISE BREAK: Compute the probability that ten randomly selected 15-
mers from ten 600-nucleotide long strings (such as in the Subtle Motif Problem)
capture at least one implanted 15-mer.

Although the probability that randomly selected k-mers match all implanted motifs is
negligible, the probability that they capture at least one implanted motif is significant.
Even in the case of difficult motif finding problems for which this probability is small,
we can run RANDOMIZEDMOTIFSEARCH many times, so that it will almost certainly
catch at least one implanted motif, thus creating a statistical bias pointing toward the
correct motif.
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Unfortunately, capturing a single implanted motif is often insufficient to steer
RANDOMIZEDMOTIFSEARCH to an optimal solution. Therefore, since the number
of starting positions of k-mers is huge, the strategy of randomly selecting motifs is
often not as successful as in the simple example above. The chance that these randomly
selected k-mers will be able to guide us to the optimal solution is relatively small.

EXERCISE BREAK: Compute the probability that ten randomly selected 15-
mers from the ten 600-nucleotide long strings in the Subtle Motif Problem capture
at least two implanted 15-mers.

Gibbs Sampling

Note that RANDOMIZEDMOTIFSEARCH may change all t strings in Motifs in a single
iteration. This strategy may prove reckless, since some correct motifs (captured in
Motifs) may potentially be discarded at the next iteration. GIBBSSAMPLER is a more
cautious iterative algorithm that discards a single k-mer from the current set of motifs at
each iteration and decides to either keep it or replace it with a new one. This algorithm
thus moves with more caution in the space of all motifs, as illustrated below.

ttaccttaac ttaccttaac ttaccttaac ttaccttaac
gatatctgtc gatatctgtc gatatctgtc gatatctgtc
acggcgttcg ! acggcgttcg acggcgttcg ! acggcgttcg
ccctaaagag ccctaaagag ccctaaagag ccctaaagag
cgtcagaggt cgtcagaggt cgtcagaggt cgtcagaggt

RANDOMIZEDMOTIFSEARCH GIBBSSAMPLER

(may change all k-mers in one step) (changes one k-mer in one step)

Like RANDOMIZEDMOTIFSEARCH, GIBBSSAMPLER starts with randomly chosen
k-mers in each of t DNA sequences, but it makes a random rather than a deterministic
choice at each iteration. It uses randomly selected k-mers Motifs = (Motif1, . . . , Motift)
to come up with another (hopefully better scoring) set of k-mers. In contrast with
RANDOMIZEDMOTIFSEARCH, which deterministically defines new motifs as

MOTIFS(PROFILE(Motifs), Dna) ,
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GIBBSSAMPLER randomly selects an integer i between 1 and t and then randomly
changes a single k-mer Motifi.

To describe how GIBBSSAMPLER updates Motifs, we will need a slightly more
advanced random number generator. Given a probability distribution (p1, . . . , pn), this
random number generator, denoted RANDOM(p1, . . . , pn), models an n-sided biased
die and returns integer i with probability pi. For example, the standard six-sided fair
die represents the random number generator

RANDOM(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) ,

whereas a biased die might represent the random number generator

RANDOM(0.1, 0.2, 0.3, 0.05, 0.1, 0.25) .

GIBBSSAMPLER further generalizes the random number generator by using the
function RANDOM(p1, . . . , pn) defined for any set of non-negative numbers, i.e., not
necessarily satisfying the condition Ân

i=1 pi = 1. Specifically, if Ân
i=1 pi = C > 0, then

RANDOM(p1, . . . , pn) is defined as RANDOM(p1/C, . . . , pn/C), where (p1/C, . . . , pn/C)
is a probability distribution. For example, given the values (p1, p2, p3) = (0.1, 0.2, 0.3)
with 0.1 + 0.2 + 0.3 = 0.6,

RANDOM(0.1, 0.2, 0.3) = RANDOM(0.1/0.6, 0.2/0.6, 0.3/0.6)

= RANDOM(1/6, 1/3, 1/2) .

STOP and Think: Implement RANDOM(p1, . . . , pn) so that it uses RANDOM(X)

(for an appropriately chosen integer X) as a subroutine.

We have previously defined the notion of a Profile-most probable k-mer in a string. We
now define a Profile-randomly generated k-mer in a string Text. For each k-mer Pattern
in Text, compute the probability Pr(Pattern|Profile), resulting in n = |Text|� k+ 1 proba-
bilities (p1, . . . , pn). These probabilities do not necessarily sum to 1, but we can still form
the random number generator RANDOM(p1, . . . , pn) based on them. GIBBSSAMPLER

uses this random number generator to select a Profile-randomly generated k-mer at each
step: if the die rolls the number i, then we define the Profile-randomly generated k-mer
as the i-th k-mer in Text. While the pseudocode below repeats this procedure N times, in
practice GIBBSSAMPLER depends on various stopping rules that are beyond the scope
of this chapter.
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GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

99

http://rosalind.info/problems/2g


W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4
80

,
8

80
,

8
80

,
24
80

,
12
80

,
16
80

,
8

80

◆
.

Let’s assume that after rolling this seven-sided die, we arrive at the Profile-randomly
generated 4-mer GCGT (the fourth 4-mer in the deleted sequence). The deleted string
ccgGCGTtag is now added back to the collection of motifs, and GCGT substitutes the
previously chosen ccgG in the third string in Dna, as shown below. We then roll a fair
five-sided die and randomly select the first string from Dna for removal.
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ttACCTtaac ----------
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

After constructing the motif and profile matrices, we obtain the following:

Motifs

G T c t

PROFILE(Motifs)

A: 2/4 0 0 1/4
G C G T C: 0 2/4 1/4 0
a c t a G: 2/4 1/4 2/4 0
A G G T T: 0 1/4 1/4 3/4

Note that the profile matrix looks more biased toward the implanted motif than the
previous profile matrix did. We update the count and profile matrices with pseudo-
counts:

COUNT(Motifs)

A: 3 1 1 2

PROFILE(Motifs)

A: 3/8 1/8 1/8 2/8
C: 1 3 2 1 C: 1/8 3/8 2/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 2 4 T: 1/8 2/8 2/8 4/8

Then, we compute the probabilities of all 4-mers in the deleted string ttACCTtaac:

ttAC tACC ACCT CCTt CTta Ttaa taac
2/84 2/84 72/84 24/84 8/84 4/84 1/84

When we roll a seven-sided die, we arrive at the Profile-randomly generated k-mer
ACCT, which we add to the collection Motifs. After rolling the five-sided die once again,
we randomly select the fourth string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg ----------
cgtcagAGGT cgtcagAGGT

We further add pseudocounts and construct the resulting count and profile matrices:
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A C C T
Motifs G T c t

G C G T
A G G T

COUNT(Motifs)

A: 3 1 1 1

PROFILE(Motifs)

A: 3/8 1/8 1/8 1/8
C: 1 3 3 1 C: 1/8 3/8 3/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 1 5 T: 1/8 2/8 1/8 5/8

We now compute the probabilities of all 4-mers in the deleted string cactaACGAg:

cact acta ctaA taAC aACG ACGA CGAg
15/84 9/84 2/84 1/84 9/84 27/84 2/84

We need to roll a seven-sided die to produce a Profile-randomly generated 4-mer. As-
suming the most probable scenario in which we select ACGA, we update the selected
4-mers as follows:

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You can see that the algorithm is beginning to converge. Rest assured that a subse-
quent iteration will produce all implanted motifs after we select the second string in Dna
(when the incorrect 4-mer GTctwill likely change into the implanted (4, 1)-motif ATGT).

STOP and Think: Run GIBBSSAMPLER on the Subtle Motif Problem. What do
you find?

Although GIBBSSAMPLER performs well in many cases, it may converge to a subop-
timal solution, particularly for difficult search problems with elusive motifs. A local
optimum is a solution that is optimal within a small neighboring set of solutions, which
is in contrast to a global optimum, or the optimal solution among all possible solutions.
Since GIBBSSAMPLER explores just a small subset of solutions, it may “get stuck” in a
local optimum. For this reason, similarly to RANDOMIZEDMOTIFSEARCH, it should
be run many times with the hope that one of these runs will produce the best-scoring
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motifs. Yet convergence to a local optimum is just one of many issues we must con-
sider in motif finding; see DETOUR: Complications in Motif Finding for some other PAGE 111
challenges.

When we run GIBBSSAMPLER 2,000 times on the Subtle Motif Problem with im-
planted 15-mer AAAAAAAAGGGGGGG (each time with new randomly selected k-mers for
N = 200 iterations), it returns a collection Motifs with consensus AAAAAAgAGGGGGGt
and SCORE(Motifs) equal to 38. This score is even lower than the score of 40 expected
from the implanted motifs!

Epilogue: How Does Tuberculosis Hibernate to Hide from Antibiotics?

Tuberculosis (TB) is an infectious disease that is caused by the Mycobacterium tuberculo-
sis bacterium (MTB) and is responsible for over a million deaths each year. Although the
spread of TB has been greatly reduced due to antibiotics, strains that resist all available
treatments are now emerging. MTB is successful as a pathogen because it can persist in
humans for decades without causing disease; in fact, one-third of the world population
has latent MTB infections, in which MTB lies dormant within the host’s body and may
or may not reactivate at a later time. The widespread prevalence of latent infections
makes it difficult to control TB epidemics. Biologists are therefore interested in finding
out what makes the disease latent and how MTB activates itself within a host.

It remains unclear why MTB can stay latent for so long and how it survives during
latency. The resistance of latent TB to antibiotics implies that MTB may have an ability
to shut down expression of most genes and stay dormant, not unlike bears hibernating
in the winter. Hibernation in bacteria is called sporulation because many bacteria
form protective and metabolically dormant spores that can survive in tough conditions,
allowing the bacteria to persist in the environment until conditions improve.

Hypoxia, or oxygen shortage, is often associated with latent forms of TB. Biologists
have found that MTB becomes dormant in low-oxygen environments, presumably with
the idea that the host’s lungs will recover enough to potentially spread the disease in
the future. Since MTB shows a remarkable ability to survive for years without oxygen,
it is important to identify MTB genes responsible for the development of the latent
state under hypoxic conditions. Biologists are interested in finding a master regulator
(transcription factor) that “senses” the shortage of oxygen and starts a genetic program
that affects the expression of many genes, allowing MTB to adapt to hypoxia.

In 2003, biologists found the dormancy survival regulator (DosR), a transcription
factor that regulates many genes whose expression dramatically changes under hypoxic
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conditions. However, it remained unclear how DosR regulates these genes, and its
transcription factor binding site remained unknown. In an attempt to resolve this
puzzle, biologists performed a DNA array experiment and found 25 genes whose
expression levels significantly changed in hypoxic conditions. Given the upstream
regions of these genes, each of which is 250 nucleotides long, we would like to discover
the “hidden message” that DosR uses to control the expression of these genes.

To simplify the problem a bit, we have selected just 10 of the 25 genes, resulting
in the DosR dataset. We will try to identify motifs in this dataset using the arsenal of
motif finding tools that we have developed. However, we will not give you a hint about
the DosR motif.

What k-mer size should we choose in order to analyze the DosR dataset using
MEDIANSTRING and RANDOMIZEDMOTIFSEARCH? Taking a wild guess and run-
ning these algorithms for k from 8 to 12 returns the consensus strings shown below.

MEDIANSTRING RANDOMIZEDMOTIFSEARCH

k Consensus Score k Consensus Score
8 CATCGGCC 11 8 CCGACGGG 13
9 GGCGGGGAC 16 9 CCATCGGCC 16

10 GGTGGCCACC 19 10 CCATCGGCCC 21
11 GGACTTCCGGC 20 11 ACCTTCGGCCC 25
12 GGACTTCCGGCC 23 12 GGACCAACGGCC 28

STOP and Think: Can you infer the DosR binding site from these median strings?
What do you think is the length of the binding site?

Note that although the consensus strings returned by RANDOMIZEDMOTIFSEARCH

generally deviate from the median strings, the consensus 12-mer (GGACCAACGGCC,
with score 28) is very similar to the median string (GGACTTCCGGCC, with score 23).

While the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, the former algorithm has the
advantage of being able to find longer motifs (since MEDIANSTRING becomes too slow
for longer motifs). The motif of length 20 returned by RANDOMIZEDMOTIFSEARCH is
CGGGACCTACGTCCCTAGCC (with score 57). As shown below, the consensus strings of
length 12 found by RANDOMIZEDMOTIFSEARCH and MEDIANSTRING are “embed-
ded” with small variations in the longer motif of length 20:
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GGACCAACGGCC
CGGGACCTACGTCCCTAGCC
GGACTTCCGGCC

Finally, in 2,000 runs with N = 200, GIBBSSAMPLER returned the same consensus
string of length 20 for the DosR dataset as RANDOMIZEDMOTIFSEARCH but generated
a different collection of motifs with a smaller score of 55.

As you have seen in this chapter, different motif finding algorithms generate some-
what different results, and it remains unclear how to identify the DosR motif in MTB.
Try to answer this question and find all putative DosR motifs in MTB as well as all
genes that they regulate. We will provide you with the upstream regions of all 25 genes
identified in the DosR study to help you address the following problem.

CHALLENGE PROBLEM: Infer the profile of the DosR motif and find all its
putative occurrences in Mycobacterium tuberculosis.
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Charging Stations

Solving the Median String Problem

The first potential issue with implementing MEDIANSTRING is writing a function to
compute d(Pattern, Dna) = Ât

i=1 d(Pattern, Dnai), the sum of distances between Pattern
and each string in Dna = {Dna1, . . . , Dnat}. This task is achieved by the following
pseudocode.

DISTANCEBETWEENPATTERNANDSTRINGS(Pattern, Dna)
k |Pattern|
distance 0
for each string Text in Dna

HammingDistance 1
for each k-mer Pattern’ in Text

if HammingDistance > HAMMINGDISTANCE(Pattern, Pattern’)
HammingDistance HAMMINGDISTANCE(Pattern, Pattern’)

distance distance + HammingDistance

return distance

2H

To solve the Median String Problem, we need to iterate through all possible 4k k-
mers Pattern before computing d(Pattern, Dna). The pseudocode below is a modifi-
cation of MEDIANSTRING using the function NUMBERTOPATTERN (implemented in
CHARGING STATION: Converting Patterns Into Numbers and Vice-Versa), which

PAGE
41

is applied to convert all integers from 0 to 4k � 1 into all possible k-mers.

MEDIANSTRING(Dna, k)
distance 1
for i 0 to 4k � 1

Pattern NUMBERTOPATTERN(i, k)
if distance > DISTANCEBETWEENPATTERNANDSTRINGS(Pattern,Dna)

distance DISTANCEBETWEENPATTERNANDSTRINGS(Pattern,Dna)
Median Pattern

return Median
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Detours

Gene expression

Genes encode proteins, and proteins dictate cell function. To respond to changes in their
environment, cells must therefore control their protein levels. The flow of information
from DNA to RNA to protein means that the cell can adjust the amount of proteins that
it produces during both transcription (DNA to RNA) and translation (RNA to protein).

Transcription begins when an RNA polymerase binds to a promoter sequence on
the DNA molecule, which is often located just upstream from the starting point for
transcription. The initiation of transcription is a convenient control point for the cell
to regulate gene expression since it is at the very beginning of the protein production
process. The genes transcribed in a cell are controlled by various transcription regulators
that may increase or suppress transcription.

DNA arrays

A DNA array is a collection of DNA molecules attached to a solid surface. Each spot on
the array is assigned a unique DNA sequence called a probe that measures the expres-
sion level of a specific gene, known as a target. In most arrays, probes are synthesized
and then attached to a glass or silicon chip (Figure 2.8).

FIGURE 2.8 Fluorescently labeled DNA binds to a complementary probe on a DNA
array.

Fluorescently labeled targets then bind to their corresponding probe (e.g., when
their sequences are complementary), generating a fluorescent signal. The strength of
this signal depends upon the amount of target sample that binds to the probe at a given
spot. Thus, the higher the expression level of a gene, the higher the intensity of its
fluorescent signal on the array. Since an array may contain millions of probes, biologists
can measure the expression of many genes in a single array experiment. The DNA array
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experiment that identified the evening element in Arabidopsis thaliana measured the
expression of 8,000 genes.

Buffon’s needle

Comte de Buffon was a prolific 18th Century naturalist whose writings on natural
history were popular at the time. However, his first paper was in mathematics; in 1733,
he wrote an essay on a Medieval French game called “Le jeu de franc carreau”. In this
game, a single player flips a coin into the air, and the coin lands on a checkerboard.
The player wins if the coin lands completely within one of the squares on the board,
and loses otherwise (Figure 2.9 (left)). Buffon asked a natural question: what is the
probability that the player wins?

1 

r 

r 
r 

FIGURE 2.9 (Left) A game of “franc carreau” with four coins. Two of the coins have
landed within one of the squares of the checkerboard and are considered winners,
whereas the other two have landed on a boundary and are considered losers. (Right)
Three coins shown on a single square of the checkerboard (the green outside square);
one coin is a loser, another is a winner, and the third corresponds to a boundary case.
You can see that if the coin has radius r, then the probability of winning the game
corresponds to the probability that the center of the coin (shown as a red dot) lands
within the blue square, which has side length 1� 2r. This probability is the ratio of the
squares’ areas, which is (1 � 2r)2.

Let’s assume that the checkerboard consists of just a single square with side length 1,
that the coin has radius r < 1/2, and that the center of the coin always lands within the
square. Then the player can only win if the center of the circle falls within an imaginary
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central square of side length 1� 2r (Figure 2.9 (right)). Assuming that the coin lands
anywhere on the larger square with uniform probability, then the probability that the
coin falls completely within the smaller square is given by the ratio of the areas of the
two squares, or (1� 2r)2.

Four decades later, Buffon published a paper describing a similar game in which the
player uniformly drops a needle onto a floor covered by long wooden panels of equal
width. In this game, which has become known as Buffon’s needle, the player wins if
the needle falls entirely within one of the panels. Note that computing the probability
of a win is now complicated by the fact that the needle is described by an orientation
in addition to its position. Nevertheless, the first game gives us an idea for how to
solve this problem: once we fix a position for the center of the needle, its collection of
different possible orientations sweep out a circle (Figure 2.10 (left)).

(x, y) (x) 

1 – x 

1 

x 

y 

FIGURE 2.10 (Left) Once we fix a point for the center of the needle (shown as a red
dot), its collection of possible orientations sweep out a circle. In the circle on the left,
the needle will always lie within the dark brown panel, regardless of its orientation.
In the circle on the right, one of the two needles lies within the dark brown panel,
whereas another is shown crossing over into the adjacent panel. (Right) Once we fix a
point (x, y) for the center of the needle, there is a critical angle a(x) such that all angles
between �a(x) and a(x) will cause the needle to cross over into the next panel. In this
figure, the length of the needle is equal to the width of the panel.

The probability that the player wins depends on the length of the needle with respect
to the distance between wooden panels. We will assume that both of these lengths are
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equal to 2, and we will find the probability of a loss instead of a win. To this end, we
first ask a simpler question: if the center of the needle were to land in the same place
every time, then what is the likelihood that the needle crosses a panel?

To address this question, let’s map the panel into which the needle falls onto a
coordinate plane, with the y-axis dividing the panel into two smaller panels of width
1 (Figure 2.10 (right)). If the center of the needle lands at position (x, y) with x > 0,
then its orientation can be described by an angle q, where q ranges from �p/2 to p/2
radians. If q = 0, then the needle will cross the line y = 1; if q = p/2, then the needle
will not cross the line y = 1. Yet more importantly, since the needle’s center position is
fixed, there must be some critical angle a(x) such that the needle always touches this
line if �a(x)  q  a(x) . If the needle is dropped randomly, then any value of q is
equally likely, and so we obtain that the probability of a loss given this position of the
needle is equal to 2 · a(x)/p.

Following the same reasoning, the needle can take any position x with equal proba-
bility. To find the probability of a loss, Pr(loss), we must therefore compute an “average”
of the values 2 · a(x)/p as x continuously ranges from �1 to 1. This average can be
represented using an integral,

Pr(loss) =

R 1

�1
2 · a(x)

p
dx

1� (�1)
=
R 1

�1
a(x)

p
dx = 2

R 1

0
a(x)

p
dx .

Revisiting Figure 2.10 (right), applying some basic trigonometry tells us that cos a(x)
is equal to 1� x, so that a(x) = arccos(1� x). After making this substitution into the
above equation — and consulting our dusty calculus textbook — Pr(loss) must be equal
to 2/p. It is not difficult to see that this probability will be the same when the needle is
dropped onto any number of wooden panels.

But what does Buffon’s needle have to do with randomized algorithms? In 1812,
none other than Laplace pointed out that Buffon’s needle could be used to approxi-
mate p, and the world’s first Monte Carlo algorithm was born. Specifically, we can
approximate the probability Pe of a loss empirically by dully flipping a needle into the air
thousands of times (or asking a computer to do it for us). Once we have computed this
empirical probability, we can conclude that Pe is approximately equal to 2/p, and thus

p ⇡ 2
Pe

.
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STOP and Think: How does this approximation change in the following cases?

1. The needle is shorter than the width between panels.

2. The needle is longer than the width between panels.

Complications in motif finding

Motif finding becomes difficult if the background nucleotide distribution in the sam-
ple is skewed. In this case, searching for k-mers with the minimum score or entropy may
lead to a biologically irrelevant motif composed from the most frequent nucleotides in
the sample. For example, if A has frequency 85% and T, G, and C have frequencies of
5%, then k-mer AA...AA may represent a motif with minimum score, thus disguising
biologically relevant motifs. For example, the relevant motif GCCG with score 5 in the
example below loses out to the motif aaaa with score 1.

taaaaGTCGa
acGCTGaaaa

Dna aaaaGCCTat
aCCCGaataa
agaaaaGGCG

To find biologically relevant motifs in samples with biased nucleotide frequencies, you
may therefore want to use a generalization of entropy called “relative entropy” (see
DETOUR: Relative Entropy). PAGE 111

Another complication in motif finding is that many motifs are best represented
in a different alphabet than the alphabet of 4 nucleotides. Let W denote either A or
T, S denote either G or C, K denote either G or T, and Y denote either C or T. Now,
consider the motif CSKWYWWATKWATYYK, which represents the CSRE motif in yeast
(recall Figure 2.3 from page 74). This strong motif in a hybrid alphabet corresponds to
211 different motifs in the standard 4-letter alphabet of nucleotides. However, each of
these 211 motifs is too weak to be found by the algorithms we have considered in this
chapter.

Relative entropy

Given a collection of strings Dna, the relative entropy of a 4⇥ k profile matrix P = (pr,j)

is defined as
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k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(pr,j/br) =

k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(pr,j)�
k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(br) ,

where br is the frequency of nucleotide r in Dna. Note that the sum in the expression for
entropy is preceded by a negative sign (�Âk

j=1 Âr2{A,C,G,T} pr,j · log2(pr,j)), whereas the
sum on the left side of the relative entropy equation does not have this negative sign.
Therefore, although we minimized the entropy of a motif matrix, we will now attempt
to maximize the relative entropy.

The term �Âk
j=1 Âr2{A,C,G,T} pr,j · log2(br) is called the cross-entropy of the profile

matrix P; note that the relative entropy of a profile matrix is simply the difference
between the profile’s cross-entropy and its entropy. For example, the relative entropy
for the motif GCCG in the example from DETOUR: Complications in Motif Finding PAGE 111
is equal to 9.85� 3.53 = 6.32, as shown below. In this example, bA = 0.5, bC = 0.18,
bG = 0.2, and bT = 0.12.

G T C G
G C T G

Motifs G C C T
c C C G
G G C G

PROFILE(Motifs)

A: 0.0 0.0 0.0 0.0
C: 0.2 0.6 0.8 0.0
G: 0.8 0.2 0.0 0.8
T: 0.0 0.2 0.2 0.2

Entropy 0.72 + 1.37 + 0.72 + 0.72 = 3.53
Cross-entropy 2.35 + 2.56 + 2.47 + 2.47 = 9.85

For the more conserved but irrelevant motif aaaa, the relative entropy is equal to
4.18� 0.72 = 3.46, as shown below. Thus, GCCG loses to aaaa with respect to entropy
but wins with respect to relative entropy.
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a a a a
a a a a

Motifs a a a a
a t a a
a a a a

PROFILE(Motifs)

A: 1.0 0.8 1.0 1.0
C: 0.0 0.0 0.0 0.0
G: 0.0 0.0 0.0 0.0
T: 0.0 0.2 0.0 0.0

Entropy 0.0 + 0.72 + 0.0 + 0.0 = 0.72
Cross-entropy 0.94 + 1.36 + 0.94 + 0.94 = 4.18
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Bibliography Notes

Konopka and Benzer, 1971 bred flies with abnormally short (19 hours) and long (28
hours) circadian rhythms and then traced these abnormalities to a single gene. Harmer
et al., 2000 discovered the evening transcription factor binding site that orchestrates the
circadian clock in plants. Excellent coverage of this discovery is given by Cristianini
and Hahn, 2006. Park et al., 2003 found a transcription factor that mediates the hypoxic
response of Mycobacterium tuberculosis.

Hertz and Stormo, 1999 described the first greedy algorithm for motif finding. The
general framework for Gibbs sampling was described by Geman and Geman, 1984
and was named Gibbs sampling in reference to its similarities with some approaches
in statistical mechanics (Josiah Willard Gibbs was one of the founders of statistical
mechanics). Lawrence et al., 1993 adapted Gibbs sampling for motif finding.
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